MAHARISHI
UNIVERSITY OF
MANAGEMENT

BULLETIN

2003-2004

Undergraduate and
Graduate Programs

Fairfield, Iowa

Professional Excellence and Higher Consciousness
EQUAL OPPORTUNITY

Maharishi University of Management and its educational programs, staff positions, and benefits are available to all people without distinction as to sex, age, race, religion, color, national origin, handicap, or veteran’s status. Institutions of higher education are required by law (Title VI and Title VII of the Civil Rights Act of 1963, Title IX of the Education Amendments of 1972, Section 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act of 1990) to provide this broad access to their educational programs and to serve society in a way that treats, with equal dignity, the diversity of individuals and groups which comprise our society. Inquiries concerning Title IX, Section 504, and the Americans with Disabilities Act should be directed to the General Counsel’s Office, Maharishi University of Management, Fairfield, Iowa 52557, (641) 472-1175.

IMPORTANT NOTICES

The University reserves the right to change, at any time, without prior notice, programs of study, course offerings, academic requirements, the academic calendar, codes of student conduct, tuition, room and board charges, and other fees, policies, and procedures. The University will determine the times at which all such changes are effective. Changes may apply not only to prospective students but also to those who are already enrolled in the University.

The Maharishi University of Management Bulletin is published for informational purposes and should not be construed as the basis of a contract between a student and Maharishi University of Management. Every effort is made to provide information that is accurate at the time the Bulletin is prepared. However, information concerning regulations, policies, fees, curricula, courses, and other matters contained in this Bulletin is subject to change at any time during the period for which the Bulletin is in effect. The Registrar’s Office can be contacted at any time for current information on these matters.

Maharishi University of Management makes available to the public, upon request, all consumer information required by the Office of Education Rules and Regulations. Consumer information about the University includes, but is not limited to, the following: academic programs, educational costs, financial aid, academic progress requirements, student retention rates, and crime statistics. This information is available from the Registrar’s Office, Building 402, Room 46 (mailing address: Fairfield, Iowa 52557)

FAMILY EDUCATIONAL RIGHTS AND PRIVACY ACT

Under the “Family Educational Rights and Privacy Act of 1974,” the following categories of “Directory Information” may be made public unless students desire to withhold their disclosure of it:

Category I
Name, address, telephone number, dates of attendance, class

Category II
Major field of study, awards, honors (including Dean’s List), degree(s) conferred (including dates), previous institution(s) attended

Category III
Past and present participation in officially recognized sports and activities, physical factors (height, weight of athletes), date and place of birth

Students may withhold any category of “Directory Information” by notifying the Registrar’s Office in writing within two weeks after the first day of class during the fall registration period. Forms for this purpose are available from the Registrar’s Office and must be filed annually in that office to withhold any “Directory Information.”

The University ensures students access to their official University records and maintains the confidentiality of personally identifiable information in accord with federal law.

©2003 by Maharishi University of Management. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher. "Transcendental Meditation, TM, TM-Sidhi, Science of Creative Intelligence, Maharishi Transcendental Meditation, Maharishi Science of Creative Intelligence, Maharishi SCI, Transcendental Meditation-Sidhi Program, Consciousness-Based, Maharishi Gandharva Veda, Maharishi Ayur-Veda, Maharishi Jyotish, Maharishi Sthapatya Veda, Maharishi Vedic Approach to Health, Maharishi Vedic Medicine, Maharishi Vedic Science, Maharishi Vedic Science and Technology, Maharishi Vedic Psychology, Maharishi Vedic Management, Maharishi Rejuvenation, Maharishi Self-Pulse, Maharishi University of Management, Maharishi Vedic University, Maharishi Ayur-Veda University, Maharishi School of the Age of Enlightenment, and Maharishi International University are trademarks licensed to Maharishi Vedic Education Development Corporation and used under sublicense. Printed in the U.S.A.
TABLE OF CONTENTS

Message from the Founder	7
Message from the President	9
INTRODUCTION TO THE UNIVERSITY	
The Mission of the University	13
Purposes and Outcomes	13
About the University	14
Special Features	14
An Ideal Academic Schedule	14
Success of Graduates	15
A Consciousness-Based Approach to Education	15
Studying Each Branch of Knowledge as Part of the Whole	16
General Education Goals	16
ACADEMIC PROGRAMS	
The First-Year Program	27
First Semester	27
Course Description for First-Year Courses	27
Second Semester	29
General Education	
Special Features	33
Optional General Education Opportunities	33
Center for Educational Excellence	33
Humanities Electives	34
School of the Arts	
Special Features	37
Departmental Requirements	
• B.A. in Fine Arts with an Emphasis in:	
Visual Arts	39
Digital Media	39
Theater Arts	40
• B.F.A. in:	
Visual Arts	41
Digital Media	41
Theater Arts	41
• Minors in	
Theater Arts	42
Dance/Movement Theater	42
Fine Arts	42
• M.A.:	
Visual Arts	42
• M.F.A.:	
Visual Arts	43
Courses	
• Visual / Digital Arts	43
• Theater Arts	47
• Maharishi Gandharva Veda Music	48
• Graduate Courses	50
School of Business and Public Administration	51
Special Features	
Departmental Requirements	
• B.A. in Management	53
• Minor in Management	53
• B.A. in Management at International Site in Beijing, China	53
• M.B.A. in Management	54
• Graduate Certificate and Specialization Programs	55
• Ph.D. in Management	57
Courses	
• Management	57
• Graduate Courses	63
• Government	72
Department of Computer Science	75
Special Features	
Departmental Requirements	
• B.A. in Computer Science	76
• B.S. in Computer Science	77
• Minor in Computer Science	77
• M.S. in Computer Science	77
• M.S. in Computer Science, Internship Program	78
• M.S. in Computer Science, Cooperative Program	78
• M.S. in Computer Science with an Emphasis in Information Systems Management	79
• Certificate in Computer Programming	79
Courses	79
Department of Education	85
Special Features	
Departmental Requirements

- B.A. in Elementary Education .. 87
- B.A. in Secondary Education ... 87
- Minor in Educational Foundations 88
- M.A.T. in Secondary Education 89
- M.A.T. in Elementary Education 89
- M.A. in Education in a Specialized Field of Teaching and Curriculum 90
- Teaching Certificate Program .. 90
Courses... 92

Department of Electrical Engineering 101
Special Features ... 101
Departmental Requirements
- B.S. in Electronic Engineering 102
- Minor in Physics and Electronic Engineering 103
Courses
- Electronic Engineering .. 104
- Mechanical Engineering ... 107
- Graduate Courses .. 107

Department of Exercise and Sport Science 111
Special Feature .. 111
Departmental Requirements
- Recreation Requirement for Graduating 111
Courses... 111

Department of Life Sciences .. 113
Special Features ... 113
Departmental Requirements
- B.S. in Biology .. 114
- Minor in Biology .. 114
- B.A. in Sustainable Living .. 114
- Minor in Sustainable Living ... 115
- B.A. in Chemistry ... 115
- Minor in Chemistry .. 115
- Certificate in Sustainable Agriculture 115
Courses... 115

Department of Literature and Writing 123
Special Features ... 123
Departmental Requirements
- B.A. in Literature .. 124
- Minor in Literature .. 124
- Minor in Writing ... 124
Courses... 124

College of Maharishi Vedic Medicine 131
Special Features ... 132
Departmental Requirements
- B.A. in Maharishi Vedic Medicine 133
- Ph.D. in Physiology with Specialization in Maharishi Vedic Medicine 134
- Technical Training Certificate ... 136
Courses... 136

College of Maharishi Vedic Science 143
Department for the Development of Consciousness ... 143
Department of Maharishi Vedic Science ... 144
Special Features .. 145
Departmental Requirements
- B.A. in Maharishi Vedic Science 146
- B.A. in Maharishi Vedic Science for TM Program
 Teachers .. 147
- Minor in Maharishi Vedic Science 147
- Minor in Development of Consciousness 147
- Specialization in Research in Consciousness 148
- M.A. in Maharishi Vedic Science 148
- Master’s Degree Concentrations 149
- M.A. in Maharishi Vedic Science with an Emphasis in Research in Consciousness 150
- Ph.D. in Maharishi Vedic Science 150
- Certificate in Research in Consciousness 151
- Certificates in Maharishi Gandharva Veda Music
 One-Year Program .. 151
 Two-Year Program ... 151
Courses
- Maharishi Vedic Science .. 151
- Forest Academies .. 162
- Research in Consciousness ... 167
- Special Maharishi Vedic Science Studies 168

Department of Mathematics ... 171
Special Features ... 171
Departmental Requirements
- B.S. in Mathematics .. 172
- Minor in Mathematics ... 172
Courses... 172

Department of Physics .. 177
Special Features ... 177
Departmental Requirements
- B.S. in Physics .. 177
- Minor in Physics/Electronic Engineering 178
Courses... 179

Rotating University .. 181

Department of Continuing Education 183
Credit Courses... 183
Noncredit Courses .. 184
Maharishi Vedic University in Iowa .. 184
Other Programs

- Research-in-Consciousness Program185
- Graduate Fellowship Program.................................185
- Super Radiance in Residence Program (SRR)185
- First Year Only Program..185
- Junior Year Program...185
- Researcher in Residence..185

Institutes

- Institute of Science, Technology and Public Policy187
- Institute of *Maharishi Gandharva Veda* Music187
- Institute of *Maharishi Sthapatya Veda* Design...........187
- Institute for Research on Higher States of Consciousness ...187
- Maharishi University of Management Agriculture Institute...187
- Institute of World Peace..187
- Center for Educational Excellence..........................188

POLICIES AND PROCEDURES

Academic Policies ..191
 - Graduation Policies and Degree Requirements191
 - General Policies ...194
 - Registration Policies ..196
 - Grading Policies ...198
 - Research in Consciousness Policies199
 - Recreation Course Policies200
 - Monitoring Student Progress200

Satisfactory Academic Progress201

Admissions ..203
 - Undergraduate..203
 - Graduate..203
 - Certificate..204
 - Transfer Students..204
 - International Students..204
 - Special Programs..205
 - Readmission...207

Financial Aid ..208

Tuition and Fees ...209
 - Standard Program Charges209
 - Nonstandard Program Charges209
 - Special Fees ...209
 - Reduction in Charges and Refund Policies...............210
 - Payment Procedures...211

DIRECTORIES

- International Board of Trustees215
- University Officers...217
- University Council...217
- Academic Deans..218
- Faculty ..218

ACADEMIC CALENDAR

- 2003–2004 ...227
HIS HOLINESS MAHARISHI MAHESH YOGI,
who founded the University in 1971, and
who has opened the gateway of enlightenment
to millions of people over the past 50 years

"If we look into the process of gaining knowledge we find there are two sides to knowledge: the object of knowledge, that which we seek to know, and the subject of knowledge, the knower. What the present system of education provides is knowledge of the object; what it misses is knowledge of the subject, knowledge of the knower in the knower's infinite capacity. When the knower is ignorant about the Self, the whole structure of knowledge is as if baseless.

“Education at Maharishi University of Management enlivens in every student’s awareness the common basis of knower and known, the Unified Field of Natural Law. Every part of knowledge is connected with the whole discipline, and the whole discipline with the Unified Field of Natural Law, which students experience directly as the deepest level of their own intelligence during the practice of my Transcendental Meditation program.

“As a result of this educational approach, students grow in the awareness that all streams of knowledge are but modes of their own intelligence. They come to feel at home with everyone and everything. Their creative genius blossoms with increasing confidence and self-sufficiency. They cease to violate Natural Law, and grow in the ability to accomplish anything and spontaneously to think and act free from mistakes—the fruit of all knowledge.” —Maharishi
MESSAGE FROM THE PRESIDENT

Maharishi University of Management was founded by Maharishi Mahesh Yogi in 1971 to make education complete, so that every student enjoys great success and fulfillment in life. By integrating academic excellence and development of consciousness, education at the University unfolds the creative genius of its students, and prepares them to be leaders of their nations, competent to create a prosperous, progressive, and peaceful world.

The University’s unique Consciousness-Based™ system of education has also created a high quality of life on campus, full of happiness, harmony, and enthusiasm for knowledge, and free of the problems and stress that trouble other universities throughout the world.

The University is fortunate to have highly qualified faculty and bright, focused students who have come from more than 90 countries and almost every state of the United States. The University faculty achievements in research, publication, and grants, and the achievements of graduates in business and professional careers are outstanding; their positive impact on society is remarkable.

In addition, the University has founded a school, Maharishi School of the Age of Enlightenment, which many feel is the best primary and secondary school in the world, as measured both by the students’ academic achievements, and by their happiness and highly enlightened consciousness and behavior.

Most important of all, the University through its Golden Domes has continually for 23 years now created coherence in the collective consciousness of the United States, generating waves of positivity, harmony, and peace for the whole nation and the world.

As President of this University, I can only be proud of the dedicated, brilliant, and highly idealistic individuals who have made all these achievements possible. Throughout all the golden times ahead for humanity, Maharishi University of Management will always be the place to which students from every nation can come to rise to leadership of the world enjoying Heaven on Earth.

We look forward to welcoming you at Maharishi University of Management. It is a university worthy of the great name it bears, the name of its founder, Maharishi.

—Dr. Bevan Morris
THE MISSION OF THE UNIVERSITY

Maharishi University of Management was founded in 1971 by His Holiness Maharishi Mahesh Yogi to fulfill the highest ideals of education. Foremost among these ideals is to help students develop the ability to think and act in harmony with their environment and to live a fulfilled life.

The University has pioneered a unique system of higher education based on developing students’ full alertness and creative intelligence—the foundation of learning. This system integrates the content of traditional discipline-based education with knowledge and technologies for developing students’ mental potential. At the foundation of this system is student, faculty, and administrator’s practice of systematic and scientifically verified techniques to develop the full potential of human consciousness.

Through programs that give students a traditional education while cultivating the holistic growth of consciousness, mind, and body, the University offers students the skills needed to manage their lives effectively, to lead lives characterized by health and wisdom, and to achieve both personal and professional success and fulfillment in all areas of life.

The University’s unique educational programs are designed to fulfill a commitment to four broad areas of responsibility:

• To achieve educational excellence
• To promote the holistic development of our students: consciousness, mind, and body
• To conduct original research and extend the frontiers of knowledge
• To improve the quality of life for the individual, the nation, and the world.

PURPOSES AND OUTCOMES

The University meets its goals of developing educational excellence and improving quality of life principally by helping students achieve specific outcomes during their academic programs. Three outcomes are the basis of institutional assessment.

Self-Development

Development of consciousness means developing the innermost nature of the individual. The University’s program of education systematically develops students’ intelligence, nourishing and unfolding all aspects of life simultaneously—mind, body, behavior, and environment. The individual grows in personal fulfillment and professional success and brings increasing fulfillment to society.

The outcomes of developing creative intelligence that the University expects of its students over the course of their academic careers include increased intelligence and creativity; improved health (mental, physical, and social); increased field independence and moral maturity; increased problem-solving ability; improved speaking and writing ability; greater self-actualization, self-esteem, personal identity, emotional health, and ego development; increased neurophysiological integration; and the experience of greater inner wakefulness.

Ability to Integrate New Knowledge Effectively in Any Field and Profession

The University’s unique approach to education enables students to feel increasingly comfortable with all fields of knowledge—to recognize the interconnections among fields of knowledge and the connection between knowledge and themselves. The University also expects that all students will acquire intellectual skills and capacities; understand multiple modes of inquiry and approaches to knowledge; and develop societal, civic, and global knowledge.

Scholarship and Service

In addition to the educational outcomes cited above, the University will develop new knowledge through research and will disseminate that knowledge through publication of scholarly works. In disseminating its knowledge, the University will also assist other educational organizations, nationally and internationally, whose purposes are consistent with the University’s mission. The primary responsibility for scholarship and service lies with the University’s faculty. Their progress is assessed in terms of their contributions to peer-reviewed publications, to the University’s own publications, and to the development of curricula and instructional materials.
ABOUT THE UNIVERSITY

Maharishi University of Management is accredited by the Higher Learning Commission and is a member of the North Central Association*, the oldest and largest accrediting organization in the U.S. In addition, the University, through the School of Business and Public Administration, has the following degree programs accredited by the International Assembly for Collegiate Business Education**: Ph.D. in Management, Master of Business Administration, and Bachelor of Arts in Management.

Academic programs include Ph.D., master’s, and bachelor’s programs in a broad range of disciplines, including Ph.D. programs in Management, Physics, Physiology, Psychology, Neuroscience, and the Science of Creative Intelligence.

Students come from almost every state and over 90 countries, including Canada, China, Russia, India, Turkey, Kenya, Brazil, Mexico, many Caribbean countries, Australia, Germany, France, Great Britain, and the Scandinavian countries; they represent nearly every culture, race, and religion in the world. The student body is a world family, living in peace and harmony, excited about knowledge, open-hearted and friendly, and dedicated to making the world a better place.

Faculty include internationally recognized scholars and researchers with degrees from such universities as Oxford, Harvard, Stanford, Princeton, and Yale.

Graduates are successful in careers in business, education, the arts, and the sciences. Many have founded their own companies or have been hired by leading corporations such as American Express, AT&T, Bell Labs, Apple Computer, Citibank, Ford, Hewlett-Packard, IBM, Motorola, and Xerox.

The Maharishi University of Management campus is located in Fairfield, Iowa, 50 miles west of the Mississippi River in the central U.S. The 262-acre campus, with 1.2 million square feet of teaching, research, recreational, and living space, is situated on gently rolling hills.

Maharishi University of Management is respected for its excellence in education, its healthy and harmonious environment, and its high quality of life. It is unique in adding to traditional education systematic programs to develop the full potential of the student. Our students make rapid progress, not only in academic achievement, but also in developing their creativity, intelligence, and good health.

*www.ncahigherlearningcommission.org, (312) 263-0456.
**P.O. Box 25217, Overland Park, KS 66225, (913) 383-6205.

SPECIAL FEATURES

While enjoying academic excellence in their chosen field of study and a vital, dynamic campus environment, our students benefit from the following special features.

• Enjoyment of a positive, nourishing, and serene campus atmosphere, supportive of the cultural and religious diversity created by students from around the world.
• Participation in a lively academic environment in which students delight in gaining knowledge, and benefit from a structured daily routine conducive to focused learning, and growth of academic and professional excellence.
• Learning systematic programs for developing the qualities necessary for success in personal and professional life, including full alertness, full creative intelligence, and full support of Nature.
• Expansion of the “container” of knowledge—the mind—to increase learning capacity, broaden comprehension, unfold full creative potential, and acquire more and more knowledge.
• Enjoyment of teaching techniques that give the wholeness of knowledge in every class, relating every part of the discipline to the whole of the discipline, and the whole to the deepest level of the student’s own intelligence. This approach makes learning personally relevant—students feel at home with all knowledge.

AN IDEAL ACADEMIC SCHEDULE

Students study with a comfortable daily routine and a longer academic year—a schedule designed to make their learning most enjoyable and effective. They culture a balanced lifestyle as they learn a natural, holistic approach to gaining and maintaining good health, which complements their academic routine.

• One course at a time. Courses are taught on the block system—one course at a time, full time, for one to six weeks. This system allows students to go more deeply into each subject and retain more knowledge with greater ease and enjoyment. One course at a time means one term paper at a time, one exam at a time. One course occupies the whole day, and assignments are planned by one professor. The structure is coherent and every moment is fruitful.
• Modular Block Curriculum. In addition to taking one course at a time, each undergraduate program packages courses into semester-long groupings of courses called modules—general-
ly, five 4-week courses. In many majors students complete a major by completing three modules (15 courses). In some majors it may be four or five modules. Students can complete many of our minors by taking one module (one semester in a subject area). This structure allows students to do in-depth work outside their major, and it allows many students to complete a double major if they desire.

• Structured Daily Routine. The block system makes it possible for students to have an ideal daily routine. Classes are for two and one-quarter hours in the mornings, beginning at 9:45 a.m., and another two and one-quarter hours in the afternoons. This time is planned by the professor and may include lectures, readings, individual and group projects and papers, laboratories, or field trips. Class sessions are Monday through Friday (morning and afternoon). Saturday classes meet in the morning, with a shorter session in the afternoon. All students are expected to attend. Homework assignments usually take one and one-half hours in the evenings, with the goal that students can be in bed by 9:30 p.m. so they are rested and refreshed for the following day.

• Longer academic year. Maharishi University of Management is the first university in the U.S. with a 42-week academic year. This means that in a four-year bachelor’s program students gain the equivalent of nearly an extra year of courses.

• Natural, holistic approach to health. Students learn easily applied principles and practices for creating and maintaining good health throughout their lives through the Maharishi Vedic Approach to HealthSM program, whose foundation is the world’s oldest scientific system of natural health care and prevention. Topics of study include balanced diet, daily and seasonal routines to prevent illness and enhance energy and vitality, exercise that balances and strengthens the physiology, and principles of healthy living and conduct.

Our students achieve high scores on national examinations and win awards and prizes in competitions in literature, writing, management, and mathematics. Undergraduate as well as graduate students in the sciences publish and present at scientific conferences, coauthoring papers with faculty members.

Over 600 scientific studies conducted at more than 200 universities and research institutions in 33 countries have documented the benefits of the University’s approach to education for mind, body, behavior, and environment.

A CONSCIOUSNESS-BASED APPROACH TO EDUCATION

Maharishi University of Management’s Consciousness-BasedSM educational approach helps students become more creative, alert, and awake, with the theme “Awaken the Total Creative Potential of Your Brain.”

This approach develops the knower—the student’s own consciousness and creativity, as well as providing knowledge of the known—the field being studied, and the process of knowing, which connects the knower to the known. Most education focuses only on the known, and leaves out the other two aspects of knowledge. Through development of consciousness at the University, students become more alert and awake—they naturally become more efficient and effective learners.

Students develop their consciousness and creative intelligence through the following:

• The Transcendental Meditation® program, which students learn as part of their first course at the University. This simple, natural, effortless technique has been learned by over 4 million people of all ages, nationalities, and religions. It allows students to experience quieter levels of the thinking process and the source of thought—Transcendental Consciousness—the full creative potential of the mind. The field of Transcendental Consciousness has been identified by leading quantum physicists as the Unified Field of Natural Law, the home of all the Laws of Nature that govern the orderly evolution of the universe.

As the mind settles down during the practice of the Transcendental Meditation technique, the body also settles down, and gains a unique state of deep rest and relaxation, releasing accumulated stress and revitalizing the entire nervous system. The container of knowledge—the mind—is expanded, increasing learning capacity, and broadening comprehension. Through this development of body and mind together, students can achieve increasing success and satisfaction in all aspects of life.

SUCCESS OF GRADUATES

Our graduates report that they are highly satisfied with their education and are well prepared for their careers. National surveys show their satisfaction and feelings of preparedness are greater than in other universities. They also report that their education gave them a better ability • to understand and apply scientific principles • to work cooperatively with others • to lead and guide others and • to appreciate different cultures and philosophies. According to these same surveys, alumni are achieving a level of success higher than national norms as measured by their salaries.
The Transcendental Meditation-Sidhi® program, including Yogic Flying, which students have the opportunity to learn at the end of their first year of study. This advanced practice unfolds the student’s ability to think and act from Transcendental Consciousness. Thought and action become more powerful and effective—more fully supported by Natural Law—so that students become increasingly competent to accomplish any objective without strain. Extensive research has shown that when practiced in a group, Yogic Flying also creates a measurable influence of harmony and progress throughout society.

Our students practice the Transcendental Meditation, and, once learned, the TM-Sidhi® programs twice daily as part of an academic course called Research in Consciousness. Students earn academic credit for participation in the Research in Consciousness course.

STUDYING EACH BRANCH OF KNOWLEDGE AS PART OF THE WHOLE TREE OF KNOWLEDGE

In each class our faculty connect what students have learned to the whole discipline and to the deepest level of the students’ own intelligence. This makes every lesson personally relevant and satisfying. In addition, the following courses and programs promote intellectual understanding of the integrated nature of all knowledge and its relationship to the Unified Field of Natural Law.

The Science of Creative Intelligence® (SCI) is a new discipline which connects each branch of knowledge to the whole tree of knowledge. It was founded by Maharishi in 1970 to meet the need for a unified framework for studying any field. While other sciences study the physical, chemical, or biological fields of Nature’s intelligence, the Science of Creative Intelligence studies the structure of the Unified Field of Nature’s intelligence, which students can experience directly as their own consciousness. SCI helps students understand how the creative intelligence studied in each academic discipline unfolds from within the universal field of intelligence. Students take a course in the Science of Creative Intelligence as their first course. This gives students a profound interdisciplinary framework for approaching the study of any field.

Forest Academies are two-week courses, held at the beginning of each semester, for undergraduate and graduate students. They are an opportunity to deepen the students’ understanding of their own personal growth. Topics include skill in action, higher states of consciousness, mind and body, creativity, collective consciousness, and world peace.

Charts Displaying the Entire Discipline at a Glance. In every class, faculty relate the specialized knowledge of that class to the bigger picture—the entire discipline and the students’ own experience. Instead of leaving class with scattered pieces of information, students integrate what they have learned. Faculty spend a few minutes making these connections through graphic displays including:

1) Main Point Charts: The main ideas of each lecture are summarized on wall charts and related to principles of the Science of Creative Intelligence. For example, in a lecture on physics, students would learn about the layers of the physical world, from the surface level which can be perceived by the senses, to deeper and deeper levels, to the Unified Field of Natural Law at the basis of physical existence, from which all particles and forces arise. A principle of SCI is also that life is structured in layers. This is experienced during the Transcendental Meditation technique as the mind settles down to finer levels of thought and at the source of thought discovers the Self, a completely Unified Field of pure consciousness.

2) Unified Field Charts: These special charts graphically “map” the entire discipline of study, from its source in the unified level of Nature’s intelligence to its application to all areas of society. The charts help students relate any specific area of study to the whole discipline and to the deepest level of their own intelligence.

Through these courses, programs, and teaching aids, students feel satisfied that even while focusing on the most detailed parts of knowledge, they have not lost the vision of the whole.

GENERAL EDUCATION

Maharishi University of Management is dedicated to general education, that is, education to develop the whole person, which includes developing the knower, process of knowing, and known.

Our approach to general education shares the emphasis on distribution requirements and mastery of basic competencies found at other institutions. To these, however, we add a pro-
gram that directly develops the students’ creative intelligence from within. Our general education program, which emphasizes both understanding and experience, develops self-referential functioning, and creates self-sufficiency, inner peace and happiness, and successful action through enlightened consciousness.

GENERAL EDUCATION GOALS
AT MAHARISHI UNIVERSITY
OF MANAGEMENT

Developing the Knower

The core resource to be developed through a university education is consciousness. Education must directly develop the creative intelligence that interacts with the world, receives and manipulates knowledge about it, and makes it one’s own. An education that focuses on information, or the content of knowledge alone, is inefficient and insufficient in this age of information explosion. A university training that focuses on the processes of learning improves one’s chances of success and happiness in life, but still falls short of giving a truly holistic education and maximizing full development. Therefore, at Maharishi University of Management, we incorporate the Transcendental Meditation program into our curriculum to provide experience of the innermost reality of the mind—pure consciousness. And research shows that regular practice of the Transcendental Meditation program results in marked enhancement of brain functioning along with increased intelligence, creativity, self-esteem, self-confidence, peace, and happiness.

Cultivating the Process of Knowing

Research indicates that within one year of graduating, more than half of college graduates will end up working in a different field than their major. Other research indicates that people change jobs, on average, every five years. Under these circumstances it’s not learned knowledge that is most important, but how efficiently you can locate the knowledge you need when you need it, and how well you can use that knowledge to accomplish the task at hand. Can you discriminate what’s useful from what’s not? Can you synthesize materials from numerous sources? Can you self-assess how well you are organizing to achieve the task, and monitor and adjust your progress along the way? At the University we explicitly teach all of the cognitive and communication skills—all of the processes of knowing—you will need for success as a student, and success in life. And when you learn these skills on the basis of your progressively growing creative intelligence, you master them quickly and profoundly.

Fathoming the Known

If developing the knower and process of knowing take priority in our general education program, does that mean there is no place for fathoming the known? Of course not. Developing the knower and skill in the processes of knowing are all aimed at understanding knowledge. The fact is, however, that all knowledge is not equally valuable for promoting success and happiness in life. Therefore, our general education goals emphasize the knowledge that leads to full development and success in life. This knowledge includes Nobel Prize-winning discoveries in quantum physics, the richness of all cultural traditions and their discoveries about the range of human potential, the universal laws of nature governing progress and success in unfolding one’s full potential, and the specific laws of nature governing right action in a chosen profession. Life ranges from smaller than the smallest to bigger than the biggest. The knowledge you will learn in our general education program reflects this range: from cosmic considerations right down to the daily practicalities of managing one’s finances.

Radiant Health

Too often university education is all about intellectual development, to the neglect of students’ overall health. At most schools, attention to the body begins and ends with a physical education distribution requirement. At Maharishi University of Management, we recognize that a healthy body develops from a healthy lifestyle — which includes proper exercise, but also requires proper diet, rest, and a health care regimen that prevents disease before it can arise. Our first-year program highlights knowledge about proper diet and nutrition, and our dining hall serves a freshly prepared organic, non-GMO, vegetarian diet. Frequent discussions about an ideal daily routine, fine-tuned to changes in the seasons and one’s schedule, and incorporating efficient time-management skills, occur as part of our tutorial program. We close our library and computer labs by 10:00 p.m. in order to reinforce the critical need for proper rest. Taken together, the emphasis on a well-nourished, well-exercised, and well-rested mind and body produces students and faculty who radiate health and happiness. And research confirms the success of this approach: Using the Duke Health Profile, we find that our students are healthier when they graduate — physically, mentally, and emotionally — than when they enroll.
Enlightened Attitudes and Progressive Behavior

Our world has never been in more need of enlightened attitudes and progressive behavior, behavior that promotes not only healthy and happy individuals, but a healthy environment and peaceful world. But enlightened attitudes and progressive actions in the world don’t happen by chance. They are the fruit of a proper education. At Maharishi University of Management, we see an orientation to lifelong development, to acting in a kind and compassionate way, and to actively promoting a sustainable environment and world peace as the desired attitudes and behaviors for our graduates. We see the appreciation of living a disciplined life, with effective time management and responsible financial management skills as critical to these attitudes and behaviors. Our general education program therefore consistently aims to develop these abilities and orientations in life.
The University’s 262-acre campus has 1.2 million square feet of building space including • dormitories and dining • classrooms • research and teaching laboratories in the sciences, electronic engineering, computer science, mathematics, visual technologies, video production, music, and human performance (physical fitness) • a library with the latest computer technology • Student Union • movie and drama theaters • recreational and sports facilities and • an elementary and secondary school.

• The library provides students, faculty and staff timely access to tens of millions of print, media and electronic resources via in-house and externally-available collections. Within the library, a core collection of more than 140,000 volumes and 600 current paper journal subscriptions is housed. Electronic access to external state-of-the-art bibliographic databases and reference/research resources is provided via the Electronic Library web page (www.mum.edu/library)—allowing registered users Internet access to over 1,000 full-text periodicals and more than 2,500 academic electronic books. With computerized administrative systems for new acquisitions, circulation, interlibrary loan, document delivery, reference, and the public catalog, we have one of the most computerized libraries in Iowa. • Art students, faculty and visiting artists exhibit their artwork in the new Unity Art Gallery located within the library. • Students with laptop computers may use the network plug-inports within the library for research, assignments, or e-mail.

• The Department of Information Systems operates computer servers and networks associated with the University’s computing facilities. The department maintains two computer labs for general use and Internet access in addition to two specialized academic computer labs. The University also provides ethernet access to the campus network from student dormitory rooms. Dial-up modem connections are available for students living off campus.

• The University has physics, mathematics, and writing laboratories, and students studying botany can make use of its greenhouse.

• The Electronic Engineering Laboratory provides exceptional training in semiconductor design.

• The Department of Fine Arts features studios for painting, drawing, and ceramics, and a photography studio and photo laboratory facilities.

Campus Reconstruction

The University has begun to rebuild the campus with beautiful new buildings designed in accordance with the principles of Maharishi Sthapatya Veda. We have four completed, and are actively planning our first “green” Sthapatya Veda design dormitory.

• The Dreier Building, inaugurated in 1999, is the University’s first building constructed according to the principles of Natural Law expressed in Maharishi Sthapatya Veda design. The 20,000-square-foot building houses the Office of the Executive Vice President, classrooms, meditation halls, the Admissions Offices and Enrollment Center, as well as key administration offices.

• The McLaughlin Building, our second Maharishi Sthapatya Veda design building, opened in February 2002 to house the Computer Science and Mathematics Departments, with state-of-the-art computer science labs, classrooms and offices.

• The Maharishi Veda Bhavan Building, completed in May 2003, houses the Maharishi Vedic Science Department, the Education Department, and the Center for Educational Excellence.

• The College of Maharishi Vedic Medicine Building inaugurated on June 11, 2003, is located in Maharishi Vedic City. This beautiful building is the Peace Palace for Maharishi Vedic City, and also houses the educational programs of the College of Maharishi Vedic Medicine, the research activities of the Institute for Natural Medicine and Prevention, and the College of Maharishi Vedic Medicine Health Center.

• Bernhart Henn Mansion, built in 1857, is the oldest building on campus. Fully renovated, Henn Mansion currently houses the Institute of Science, Technology and Public Policy, and the Development Office.

• The Student Union is where students meet friends, collect mail, drop in to the Student Activities offices, visit the bookstore or café, games and TV rooms—or, on weekends, enjoy musical performances and dances.

Sports and Recreation

The Recreation Center is a 60,000-square-foot indoor facility, one of the largest indoor university sports facilities in the state of Iowa. The campus also has a soccer stadium, outdoor swimming pool, sand volleyball court, and Fieldhouse.
STUDENT LIFE

At Maharishi University of Management, students find a supportive, friendly atmosphere in which to pursue their academic and personal goals. Carefully designed programs and policies allow students to relax into comfortable routines which promote rapid growth in every area of life. These routines enable students to enjoy a high level of health, psychological well-being, and energy. This exhilarating period of University life acts as a springboard for future success professionally and personally. Therefore the programs and policies described below reflect the University’s deep commitment to support students’ desires to gain maximum growth—not only during their university years, but also for the rest of their lives.

STUDENT SERVICES

Tutorial Program
Students enjoy close links with faculty through a University-wide tutorial program. Under this program both undergraduate and graduate students have faculty tutors, generally from their academic major departments. There is a monthly tutorial meeting where faculty tutors meet with their group of students. In addition to this, faculty tutors meet individually with students to assist and support the students’ academic progress, well-being, and happiness. Tutors provide support and guidance so that the students’ time at the University is most fruitful and enjoyable.

Resident Advisor Program
In each building (or building area), an outstanding student serves as a Resident Advisor. These individuals provide peer support when needed, organize dorm-related group activities, and help maintain a high quality of life in each dormitory.

Academic Advising
Faculty in each academic department advise students in the major or graduate program. The Registrar’s Office provides academic advising throughout the year to assist all students in planning and scheduling their academic programs.

Career Development Center
The University has a dynamic and comprehensive approach to career planning. The Career Development Center in conjunction with the University faculty in each department provides students and graduates with the resources, skills, and strategies necessary to successfully design and implement their careers.

If you would enjoy discussing choice of major, career choices most suited to your skills and interests, graduate school options, and mentorship, internship and employment options during your education and after you graduate, please contact the Career Development Center.

Medical Assistance
The College of Maharishi Vedic Medicine Health Center is located on campus for students who may need medical assistance. The phone number is 472-8477, and the Health Center is open from 10:00 a.m. to 4:15 p.m. Monday through Friday and on Saturdays from 1:00 to 4:15 p.m. The Ottumwa Regional Hospital (25 miles west) has a 24-hour emergency physician at the hospital and is recommended as the first choice for emergency care. If timing is a factor, emergencies can also be handled by the Jefferson County Hospital, which has a local doctor on call. The University of Iowa Hospitals in Iowa City (60 miles north) have full-time emergency doctors.

Accident insurance for all students is included in the comprehensive tuition charge. All international students are required to have medical insurance and it is strongly recommended that U.S. students also have medical insurance.

HOUSING AND MEALS

Housing
Students live on campus in comfortable, fully furnished single rooms or double rooms. Classrooms and dining facilities are within a few minutes walking distance of student housing. Most dormitories have laundry facilities and the larger ones have lounge and study areas as well.

The University’s campus is the setting for a unique university community. Maharishi University of Management was founded as an educational model for developing the full potential of the individual—realizing the highest ideal of education—emphasizing academic excellence, development of consciousness, creativity, and a high quality of life. The Board of Trustees, since the University’s inception, has structured the University as a model to achieve this goal. The key is the University’s Research in Consciousness program with its daily group practice of the Transcendental Meditation and TM-Sidhi programs.

Almost all students, faculty, and staff live on campus. Graduate students, married students, students with dependents, and students over 25 years of age have the option of living in
Utopia Park, which offers 200 units of family housing on campus. If housing is not available in Utopia Park, these students may petition the Academic Standards Committee for permission to live off campus.

By living on campus, all members of the University community can more easily fulfill the requirement to regularly attend the on-campus program every morning and evening. Living on campus also gives students and faculty opportunities to interact closely and work collectively to achieve their shared goals, not only during classes but throughout the day.

Meal Plan
Dining halls serve a rich and wholesome vegetarian-and-dairy menu three meals each day. In addition to delicious entrees and fresh vegetables and fruits, an organic salad bar, homemade breads and desserts, ice cream, milk, juices, sandwich counter, and hot soups complement the menu.

STUDENT CONDUCT AND DRESS

At the highest levels of leadership in society, knowledge of appropriate behavior is essential. Students gain confidence that their behavior will be ideal in any setting through training in dignified attire, speech, and etiquette. All students are expected to uphold the highest standards of dignified behavior, both on and off campus. Developing cordial and considerate behavior is essential for harmony and coherence, both as a member of the community and as a member of any group—professional or social.

Attire
Attire should always suit the occasion. Dignified attire in class reflects appreciation of the value of the knowledge available at the University and prepares students to be at ease in professional settings. Jackets and ties are recommended for men, as are dresses or coordinated outfits for ladies. For men, hair should be neatly trimmed and general appearance should be clean-shaven and neat; mustaches are acceptable but beards are not. During class hours, blue jeans, T-shirts, athletic apparel, such as swimsuits and gym shorts, or any extremely informal apparel, are considered inappropriate for class, Domes, meditation halls, residence hall lobbies, dining facilities, and similar public areas. Students should observe these standards of dress for meals and at all public functions.

Participation
For students to gain the maximum benefit from their University education, attendance at all classes and full participation in all aspects of the assigned curriculum are mandatory. Exceptions may be granted for illness or family emergency.

Balanced Routine
Taking full advantage of the curriculum also depends on maintaining good health and a strong and stable physiology and psychology. Toward this end, students are expected to maintain a regular schedule of rest, academic work, meals, and exercise. Also, alcohol is not permitted on campus and smoking is not permitted in any University building. The University requires that all students refrain from the use of nonprescribed drugs (including marijuana, hallucinogens, amphetamines, and barbiturates) for the entire time they are enrolled as students.

For further information regarding policies governing student conduct, please refer to the Student Handbook.

STUDENT GOVERNMENT

Student Government provides practical channels for developing leadership skills. Student Government is composed of the Student Senate, World Congress, and the Executive Committee. Through these branches it provides:

- promotion of student organizations and clubs
- cultural, social, and athletic committees to organize activities
- sponsorship and funding for movies, concerts, dances, speakers, celebrations, and other activities
- sponsorship of all-campus assemblies (World Congress)
- hosting of distinguished speakers and guests
- student publications.

STUDENT ACTIVITIES

Students enjoy a wide variety of recreational activities—cultural events, movies, dances, visiting speakers, seasonal celebrations, Student Government-sponsored conferences and festivals, a variety of student clubs, and a new radio station on the campus, KHOE. The Student Activities Office brings performing artists to campus, including classical, popular, and folk artists, international performing groups, theater, and dance bands.

Guest Speakers
The University hosts distinguished visitors from around the world who often speak on campus. Such visitors have included: the governor of Iowa; members of the U.S. Congress; ambassadors and ministers from Asia, Africa, Europe, and Latin America.
America; business leaders from major U.S. corporations; noted authorities on natural health care; leading scientists, and many others.

Student Union Building
The Student Union building is the focal point for many student activities. The upper level houses a theater, snack bar, bookstore, Student Government offices, and the lower level includes a large dance floor and DJ booth, plus offices for the various student organizations.

Activities and Clubs
There are many opportunities to participate in over 25 student clubs and activities representing the variety of student backgrounds, interests, and skills—including international student groups, an active student environmental organization, sports clubs, chess club, and many others including:

- Archery Club
- Art Club
- Baseball Club
- Business Club
- Chess Club
- Club Latino
- Computer Club
- EcoFair
- Floor Hockey Club
- Foosball Club
- Global Country of World Peace Club
- Golf Team
- Hindu Students’ Club
- Islamic Club
- Knitting Club
- LAN Club
- O.N.E. (Organization for a New Earth)
- Ping Pong Club
- Pool Club
- Rock Climbing Club
- Sailing Club
- Soccer Club
- Student Preparatory Purusha Club
- Tennis Club
- Theater Guild
- Volleyball Club
- Yogic Flying Club

SPORTS AND ATHLETIC FACILITIES

Daily recreation courses are a requirement for graduation from all undergraduate degree programs. Recreation and sports activities available at the University include soccer, tennis, volleyball, golf, running, swimming, basketball, fitness training, aerobics, weight conditioning, badminton, dance, rock climbing, cycling, softball, windsurfing, and others. Sports clubs and teams provide ongoing opportunities for competition.

Maharishi University of Management has intercollegiate teams in soccer and golf. The soccer club, with members representing many countries, was three-time undefeated champion of its league. The golf team practices at the beautiful Fairfield Country Club, the oldest golf club west of the Mississippi River. The golf team plays in competitive matches and regional tournaments in both the fall and spring.

For students eager for outdoor adventure, the Department of Exercise and Sport Sciences offers three-day excursions (on weekends between courses). These exhilarating, professionally supervised adventures include activities such as alpine skiing, rock climbing in the scenic rock parks of Iowa, kayaking the Wolf River’s white water, cross-country skiing, horseback riding, long canoe trips, or sailboarding the wide lakes of the Midwest.

The recreation center is a 60,000-square-foot indoor facility, one of the largest indoor university sports facilities in the state of Iowa. It houses four tennis courts, four basketball/volleyball courts, a gym, a four-lane track, a combination batting and golf cage, a rock-climbing wall, badminton courts, table-tennis area, and a fitness training facility. An outdoor swimming pool, a track, tennis courts, and a soccer stadium are also located on campus.
MAHARISHI UNIVERSITY OF MANAGEMENT

ACADEMIC PROGRAMS
THE FIRST-YEAR PROGRAM

The first-year program at Maharishi University of Management provides a unique vision, a completely original angle, on how to approach and succeed in life. We ground our curriculum in a vision of human potential that includes higher states of consciousness, and in an understanding of the fundamental unity of life. Our program provides not only intellectual understanding of this new vision, but also technologies for realizing this vision. This intellectual understanding and this personal growth experience lead to a most fulfilling and productive life.

Profound intellectual awakening and growth of consciousness deepen with each year at the University. But the first year at Maharishi University of Management is especially important in this transformation. It consists of a sequence of courses that introduces the core curriculum of the University, develops effective thinking, research, speaking, writing, and teamwork skills, and exposes you to a remarkable breadth and depth of knowledge in this first year.

FIRST SEMESTER

Block 1

CC 100 The Science of Creative Intelligence

The semester begins with Maharishi’s 33-lesson Science of Creative Intelligence (SCI) course videotaped in Fiuggi, Italy in 1972. In this course Maharishi talks about all the implications for life resulting from daily practice of the Transcendental Meditation technique and the growth of creative intelligence. He describes the principles underlying the development of full potential in life and demonstrates the unified expression of creative intelligence in the laws of nature that modern science has discovered. He thereby integrates the understanding of nature’s intelligence provided by modern science (through its objective approach) and by ancient Vedic Science (which utilizes both objective and subjective approaches to gaining knowledge).

Like all sciences, the Science of Creative Intelligence has an applied and a theoretical aspect: The applied aspect is the Transcendental Meditation program, which provides all human beings with the ability to directly access the field of pure intelligence in the simplest state of their own awareness. Students not yet instructed in the Transcendental Meditation program learn this simple, effortless technique as part of the SCI course. Through regular practice of the Transcendental Meditation technique, students begin to utilize the unlimited potential of their own creative intelligence.

The highlight of the course is Maharishi’s description of seven states of consciousness, including the four higher states of consciousness that are the core of Maharishi University of Management’s research program on the farther reaches of human potential. The understanding of these higher states of consciousness, and the experience of the first of them—Transcendental Consciousness—through your daily Research in Consciousness program, will begin to establish an inner compass for all good and fruitful directions in life.

ESS 103 Base Camp: Building Friendships

Integrated into the SCI course is a five-day retreat where students, faculty, and staff go to a wilderness area for a camping trip to help build friendships and understanding between all three groups with the goal of establishing cooperation for future endeavors. Whereas the SCI course enriches the mind and spirit with new ideas about human potential, Base Camp enriches the body and soul, with opportunities to enjoy some beautiful countryside with new friends. Activities include canoeing, biking, and hiking, as well as learning ‘outdoor’ skills.

COURSE DESCRIPTIONS FOR FIRST-YEAR COURSES

Block 2

BIO 101 Physiology is Consciousness: Awakening the Cosmic Potentiality of the Human Brain

The course will explore the new paradigm in science that the “Physiology is Consciousness.” Current concepts of mind and body will be understood in terms of this new paradigm.

The human brain is unique in the universe. The unfathomably complex fabric of the brain neuropil rivals the billions of shining galaxies. This course examines the contribution of the Vedic Tradition of knowledge to our understanding of brain structure and function, and hence, the potential that lies within
every individual. The exponential growth of modern scientific understanding during the last 100 years, primarily the last 50 years, has created a situation in which we have an urgent need to understand the relationship between consciousness and our physiology. This course will present our facts of brain structure and function in light of Maharishi Vedic Science and Raja Raam’s discovery of Veda and Vedic Literature in human physiology. We will examine how our brain constructs reality at every moment and how, from Vedic Science, the transcendental field of life, the home of all the Laws of Nature, is the source of these myriad physiological impulses seamlessly orchestrated to produce what we call human experience. We will study how the experience of unboundedness, the Self of every individual, can transform our physiology and awaken the total creative potential of the brain in enlightenment, the birthright of every human being. (4 units)

Block 3

MVS 102 Maharishi Vedic Science and Sanskrit: Accelerating Growth to Enlightenment

"Consciousness is the most basic element in creation; therefore the study of consciousness and research in consciousness, which is offered by the traditional Vedic Literature, gives the student the ability to do anything and achieve anything with the support of the evolutionary power of Natural Law."—Maharishi

Reading the Vedic Literature in Sanskrit is a new technology of Maharishi Vedic Science to speed the development of higher states of consciousness. In this course students learn to read the Vedic Literature in Devanagari and deepen their understanding of the role of reading the Vedic Literature in developing enlightenment.

Students also deepen their understanding of the fundamental themes of Maharishi Vedic Science and cultivate their ability to express these themes in speaking and writing. Also included is the recent discovery of how human physiology forms a perfect replica of Natural Law, as embodied in the 40 aspects of the Veda and Vedic Literature. This historic discovery reveals that the natural laws governing the universe are the same laws governing our physiology—meaning that each of us has access, within our own physiology, to the total potential of Natural Law. This in turn gives us the potential to know anything, do anything, and accomplish anything. (4 units) (Note: This course is for those who comfortably read Sanskrit in Devanagari and have considerable background in Maharishi Vedic Science.)

Block 4

PHYS 110 Introduction to Unified Field Theories and Cosmology: Locating the Total Potential of Natural Law in Physics

The course gives a deep and non-mathematical understanding of the differences between classical and quantum physics. It explains the meaning and mechanics of unification and symmetry, and the main concepts of unified quantum field theories and superstring theory. It shows that at the basis of the universe lies a complete unified field, a self-interacting entity from which all particles and forces arise through the process of spontaneous symmetry breaking. The course gives students the experience and the understanding of the interconnectedness between the laws of physics, the universe and themselves. (3 units)

Block 5

LIT 114 Self-Discovery in Literature

The acts of reading and writing are examples of both self-discovery and Self Discovery. It is common to think of writing as an act of self-expression, just as all art forms are self-expressive. But writers also express more than they even realize, and much of what is written consciously or unconsciously conveys the deeper characteristics of one’s Being, including the unmani-
fest, unbounded, unwritten, absolute Self. What is often over-
looked, however, is that reading is also a creative act. When we
read we are absorbing much of the consciousness of the author,
but we are also altering it in many ways as well. We cannot help
but do so. Each reading is subjective. It conforms to our own
individual ways of seeing the world. In this sense, the act of
reading is the act of finding one’s self in everything we read.
This course also functions as Self Discovery because it is our
design to locate the absolute, unchanging Self in the midst of
the literary texts’ ever-changing diversity. In this course we will
sample all of the literary genres: the novel (excerpts), the short
story, the literary essay, the lyric poem, the film, and a Shake-
spearean play. We will learn some literary terms, do some cre-
avtive writing, and discover some different strategies for reading
and writing. (2 units) (Distribution Area: Arts)

MVS 122 Music: Life Is Music

Most people do not consider themselves “musical.” But,
from a different angle, the basic elements of music—vibration
and sound, rhythm and harmony—lie at the very heart of life
itself. This is why music is called the universal language.

Most people enjoy music, though—and enjoying music is
where this course begins. The course emphasizes an intuitive
approach to music appreciation and performance rather than
intellectual analysis. Students listen actively to live perfor-
mances and recordings and learn to recognize the styles of the
greatest classical composers.

On this foundation, students learn the fundamentals of read-
ing music. Then they choose between singing in a chorus or
learning the basics of playing the keyboard—and they give a
brief performance at the end of the course. As part of the course
there will be live performances and discussions led by the music
faculty, as well as special guest performances and seminars with
in-residence experts in the classical music of India, known as
Maharishi Gandharva Veda music. Students also learn about the
harmonic series, music history, the American popular song, and
modern music technology. (2 units) (Distribution Area: Arts)

SECOND SEMESTER

Block 6

MATH 148 Infinity: The Structuring Dynamics of
Mathematics

Mathematics takes place in the imagination, in conscious-
ness, unlimited either by finite measuring instruments, by the
senses, or even by the feelings. At the same time, mathematics
has strict criteria for right knowledge. The power of mathemat-
ics lies in bringing infinity out into the finite and making it use-
full in everyday life—from deciding which bank offers the best
return on money, to medical imaging, to designing textiles, to
creating a work of art, to putting a man on the moon.

In this course, students explore many different ways in
which mathematics expresses, emerges from, and uses infinity
and its self-interacting dynamics. They look at the foundation of
mathematics in the infinitary processes of set theory, the uni-
verse of sets, different sizes of infinity, the continuum and its
limit process, sequences and series, infinite replication, and
applications of infinity in many areas of life. (2 units) (Distribu-
tion Area: Sciences)

ED 119 Teaching for Enlightenment

What can human beings become? What can culture attain? In
every age, great thinkers have asked these questions and
through their answers have given expression to a vision of what
humankind could achieve through education.

This course introduces students to the ideas of these great
thinkers and their ideas about education. Leading all thinkers is
Maharishi Mahesh Yogi, whose Consciousness-Based educa-
tion fulfills the long-sought goals of education—enlightenment
for the individual and invincibility for the nation. Students
investigate the leading theories and approaches of education, as
well as practical principles of teaching and curriculum design.
Working in teams, they design a lesson which is taught to chil-
dren in our model school on campus, Maharishi School of the
Age of Enlightenment. In the process of teaching their lessons,
students test their ideas in practice and evaluate their effective-
ness based on observed results. Students use the knowledge of
modern social science and the Science of Creative Intelligence
to gain a comprehensive, integrated view of education. (2 units)
(Distribution Area: Social Sciences)

Block 7

MVM 130 Maharishi Consciousness-Based Approach to
Health

Maharishi Consciousness-Based Approach to Health is the
aspect of the ancient Vedic Tradition that provides the knowl-
edge of perfect balance and harmonious functioning in human
physiology. This knowledge is validated by a growing body of
scientific research and is essential for relieving mankind of the
burden of disease.

This course teaches students to promote their own health,
happiness, balance, and longevity by enlivening the body’s
homeostatic, self-repair and defense mechanisms. Students
explore profound and practical knowledge on the role of diet, daily and seasonal routines, exercise, and behavior in creating balance, optimizing health and accelerating personal development. (4 units)

Block 8

ART 141 Art of the Self: Creating Images of Consciousness

In this course, students delve into the creative process with focus on the self-portrait. To learn about the history of the self-portrait, they review some of the most famous self-portraits in Western art—Dürer, Rembrandt, Sophonsiba, Van Gogh, Anguissola, Vigée-Lebrun, Kollwitz, Escher, and others. Then they create their own self-portraits. Three lessons focus on drawing. Students learn to use and combine the simple elements of line, shape, tone, and change of direction to foster self-expression. In the process, they discover how simple and natural drawing actually is. Students often express surprise at how easy it is to learn something they always thought difficult.

Classes are held in the studios of the School of the Arts, with ample space, light, and comfort for creating works of art. Through lectures on art by Maharishi, students come to appreciate art from the deepest perspective, that all art originates within the Self of the artist—and they verify this from their own experience as artists. (4 units)

WTG 191 College Composition I

This course presents students with the challenge of reconciling seemingly opposite perspectives—writing as an ongoing process of discovery and writing as the creation of a finished work. Students develop greater facility with the writing process and strengthen foundational skills. Connections between reading and writing are fostered as students read and discuss a narrative text. (4 units)

WTG 192 College Composition II

This course develops students’ abilities to use language for different purposes, subjects, and audiences, focusing on both exposition and persuasion within the academic context. Students read and discuss published works that reflect the variety of thinking and writing across the disciplines. (4 units) Prerequisite: WTG 191 or appropriate assessment

MATH 152 Elementary Algebra

The infinitely flexible language of algebra is used to quantify and model mathematical patterns and relationships. Topics include operations on algebraic expressions, linear equations, the coordinate plane, inequalities, factoring, and simple quadratic equations. (4 units)

CS 101 Computer Science: Nature’s Cosmic Computing—Harnessing the Organizing Power of Knowledge

This course investigates the most fundamental knowledge at the basis of all computing and modern computer technology, and how it is connected to principles of the Science of Creative Intelligence and Vedic Science. We will look at the structure of computing itself, of computer science, and of the wide range of computing applications which are primary to all areas of professions and life today. (4 units)

Block 9

Various Rotating University Courses (See Study Abroad)

Block 10

MGT 145 Locating the Source of Business Success in Atma

Every student wants to find a career that is exciting, rewarding, and fulfilling. In this course, students realize that business is more than mere buying and selling. At its heart, business involves people expressing their creative intelligence in an infinite variety of ways. Students are encouraged to reflect on their own creative ideas and to see how these ideas can be applied in the business world. Students learn that business can simultaneously fulfill the desires of society, the company, and the employees.

This course has a number of special features. Leading entrepreneurs from Fairfield’s business community speak on the link between business success and the development of consciousness and creativity. Students see selected videotapes on quality management and other topics. Dividing into groups, they visit local retail stores to evaluate the levels of customer service, and discover the greater effectiveness of the enlightened management principles described by the Science of Creative Intelligence. (2 units) (Distribution Area: Social Sciences)

HUM 231 Great Civilizations: The Quest for Heaven on Earth

In this course, students dive into the most inspiring creations of civilization—art, mythology, philosophy, and religion—highlighting humanity’s quest for an ideal society. The course begins with the ancient Vedic Civilization, which enjoyed Heaven on Earth, and continues with extraordinary
videotapes and slide lectures on Indian, Chinese, Middle Eastern, Egyptian, African, European, and Native American cultures, and concludes by examining the possibilities for creating Heaven on Earth today. By familiarizing students with many of the world’s cultures in the light of their own consciousness, this course prepares students to be global citizens of the 21st century, at home in the world family. This course helps students discover that history is the story of the Self—
their own Self—expressing itself in the waves of time. (2 units) (Distribution Area: Social Sciences)

MATH 153 Intermediate Algebra

This course extends Elementary Algebra to develop further algebraic models. Students study polynomials, rational expressions, quadratic equations, complex numbers, and graphing in the coordinate plane. (4 units) Prerequisite: MATH 152
GENERAL EDUCATION

Maharishi University of Management is dedicated to education that develops the whole person. Our approach to general education shares the emphasis on distribution requirements and mastery of basic competencies found at other institutions. To these we add a program that directly develops the students' creative intelligence from within. In addition, our program emphasizes the development of health and fitness, enlightened attitudes, and progressive behavior.

SPECIAL FEATURES

- Research in consciousness, the twice-daily practice of the Transcendental Meditation program (taken by all students throughout their education), and TM-Sidhi program (taken by all qualified students throughout their education).

- A First-Year Program, which includes required courses in the Science of Creative Intelligence, Sanskrit and Maharishi Vedic Science, writing, mathematics, and a freshman seminar focused on the theme of unity within diversity in the individual, nature and society. The Unity Within Diversity seminar also focuses on effective thinking, research, speaking, writing, and teamwork skills.

- An exercise program in which students are tested for their fitness at the beginning of each semester, create their own daily exercise regimen based on fitness goals for the current semester, and then are retested for progress on these goals at the end of the semester.

- A health education program that begins with a required two-unit course that introduces students to the principles of proper rest, nutrition, and time-management and continues with a first-year tutorial and mentoring program that helps students create good habits in these areas.

- Forest Academies, the first two weeks of each semester, which provide opportunities for more extended research in consciousness and for exploring the application of the Science of Creative Intelligence to areas ranging from the arts to the sciences.

- A Senior Capstone Forest Academy during which graduating students are assessed for general education outcomes and reflect on the growth they have experienced in their years at Maharishi University of Management.

The specific unit requirements for all these programs are listed in the Academic Policies section of the Bulletin.

OPTIONAL GENERAL EDUCATION OPPORTUNITIES

In addition to these required courses and programs, the University also provides the following general education opportunities:

- The Rotating University Program, our study abroad option that complements our global mission by offering students the opportunity to study in foreign countries. Courses have been taught in Greece, Australia, New Zealand, Switzerland, Italy, and India. The purpose of the program is to give students the experience of other cultures in some of the world’s most beautiful locations.

- A five-course module that provides all the practical tools needed for a fully sustainable personal life, including courses on Practical Human Physiology, Functional Human Relationships, Critical Thinking, Creativity, Leadership and Team-Building, and Managing Your Money.

- A two-unit career development and job placement seminar that all students are encouraged to take in their third or fourth year.

GENERAL EDUCATION GOALS AND THE CENTER FOR EDUCATIONAL EXCELLENCE

In order for all students to graduate having mastered our general education goals and objectives, these educational outcomes...
must be addressed and reinforced throughout the curriculum. We have therefore created a Center for Educational Excellence that works with the individual faculty and departments on the implementation of our general education goals and objectives in all programs and courses. This Center also oversees an assessment program that continuously monitors our progress in achieving these goals and outcomes.

As part of the general education program, all faculty are encouraged to incorporate elements into their classes that develop

- Writing, speaking, and communication skills
- Reading, listening, and information gathering skills
- Group and independent research and work skills
- Proficiency with new technology
- Effective thinking skills
- Mathematical and scientific reasoning skills, as appropriate
- Creative imagination and problem-solving skills
- Aesthetic sensibility and experience in the arts, as appropriate
- Self-assessment skills

All classes are organized around universal principles of the Science of Creative Intelligence course and in Vedic Science courses. In addition to the specific information and knowledge being studied in the modern disciplines, classes also develop the following understandings, as appropriate:

- Understanding of the quantum mechanical nature of reality
- Understanding the unity of all knowledge, its common source in the Unified Field of Natural Law, and its identity with the student’s own Self
- Understanding the universality of the Vedic Science model of human development as it has expressed itself in diverse world civilizations
- Understanding the mechanics, principles, practical technologies, and evidence that support the development of higher states of consciousness and success in life
- Understanding professional standards and responsibilities, with exposure to a range of career opportunities.

SPECIAL GENERAL EDUCATION HUMANITIES ELECTIVES

In addition to elective courses offered by the academic departments at the University, students may take any of the following courses to fulfill their general education distribution requirements in the Humanities:

NOTE: 4-unit courses may be offered as 3-unit courses during shorter blocks.

HUM 108 The Good Life in Western Philosophy: Seeking the Highest First
Philosophy asks one particular question of greatest significance for human life, “What is the good life?” This question is an excellent entry point into philosophy, because the answer deals explicitly with ethics (values), and necessarily leads one to the investigation of the other major areas of philosophy—epistemology (the nature of knowledge) and metaphysics (the nature of reality). This course will give students a general introduction to the field of philosophy and to some of the greatest philosophers in the Western tradition. In addition, students will gain a deep understanding of the value that Maharishi Vedic Science has for illuminating the thinking of great philosophers and, more generally, for helping us to answer the fundamental questions of philosophy and life. (4 units)

HUM 110 Western Philosophy: The Quest for Self-Knowledge, Wisdom, and the Highest Good
When we explore the mainstream of the Western intellectual heritage from the perspective of Maharishi Vedic Science, we discover that great philosophers throughout Western history have described higher states of consciousness. In this course, reading from the writings of such philosophers as Plato, Aristotle, Descartes, Spinoza, Hegel, and Whitehead, students see the Western intellectual heritage confirming the universality of higher states of consciousness, and observe that Maharishi has elucidated an understanding of human development that is universal to human life. The course also looks at current issues in the nature of science and the limitations of the scientific method in gaining complete knowledge. (4 units)

HUM 230 Rotating University in Greece: Conceptions of the Good Life in Greek Thought
Rotating University courses offer an opportunity to study and travel abroad. This course takes place on the Greek mainland, the Greek islands, and a cruise ship on the Aegean Sea. It combines an introduction to Greek culture and history with a specific focus on virtue and the good life in Greek thought. Students tour some of the most famous historical sites in Greece—the Parthenon in Athens, the Oracle at Delphi, the palaces of the Minoan civilization on Crete—along with an opportunity to experience the charm of contemporary Greek towns and the beauty of Greek beaches. For four days, the
course is on a cruise ship, which visits a number of famous Greek sites from antiquity.

The intellectual thought of ancient Greece is very rich, serving as the source of much of the Western intellectual tradition. We read original works of some of the greatest Greek writers and thinkers, from the perspective of understanding the nature of the good life. We will also discover the profound parallels between ancient Greek thought and the insights of Maharishi Vedic Science. Both intellectually and experientially, this course provides an exploration of the good life. (4-unit course—2 units of General Education credit) (Note: The content of this course is different from “The Good Life in Western Philosophy.”)

HUM 231 Great Civilizations: The Quest for Heaven on Earth

In this course, students dive into the most inspiring creations of civilization—art, mythology, philosophy, and religion—highlighting humanity’s quest for an ideal society. The course begins with the ancient Vedic Civilization, which enjoyed Heaven on Earth, and continues with extraordinary videotapes and slide lectures on Indian, Chinese, Middle Eastern, Egyptian, African, European, and Native American cultures, and concludes by examining the possibilities for creating Heaven on Earth today. By familiarizing students with many of the world’s cultures in the light of their own consciousness, this course prepares students to be global citizens of the 21st century, at home in the world family. This course helps students discover that history is the story of the Self—their own Self—expressing itself in the waves of time. (4 units)
INTRODUCTION

The School of the Arts is dedicated to nurturing the deepest values of creative expression. Students discover their own inspiration by accessing the unbounded source of creativity within themselves. We provide a life-supporting environment in which personal inspiration can attain artistic realization. Living within this unique community, students discover their artistic genius and begin to unfold their full potential.

Our arts programs are unique. They integrate practical training, profound intellectual understanding, and the progressive development of consciousness, the basis of all creativity. The fine arts are the creative self-expression of consciousness, articulating the awareness of the artist and enlivening the awareness of the viewer or the listener. To attain the finest values of art, the artist and the viewer must experience the most expanded values of consciousness. In studying fine arts at Maharishi University of Management, students become well acquainted with consciousness and the mechanics of creativity, thereby enjoying more effortless, stress-free, and spontaneous creative expression. The faculty support students’ enlivened creativity by encouraging them through their successes—a teaching method that strengthens the students’ natural inspiration.

Traditionally, the arts have celebrated the most glorious possibilities for human life. The arts have articulated high ideals of beauty, harmony, and wholeness. These ideals are now becoming realities of creative expression and daily life for students at Maharishi University of Management.

Programs Offered

- B.A. in Fine Arts with an Emphasis in Visual Arts, Digital Media, or Theater Arts
- B.F.A. in Visual Arts, Digital Media, or Theater Arts
- Minor in Theater Arts
- Minor in Dance/Movement Theater
- Minor in Fine Arts
- M.A. and M.F.A. in Visual Arts

SPECIAL FEATURES

Visual Arts: Painting—Drawing—Ceramics—Sculpture

- Students explore their creativity in the most refined fields of personal expression, supervised by accomplished faculty who are experts in guiding aspiring artists.
- Courses incorporate independent studio work under faculty guidance.
- Students are encouraged to submit work to state and regional art exhibitions, where our students have excelled.
- Courses in art history and art appreciation examine the greatest art of the past, and inspire students to develop their own artistic genius.
- Students take field trips to museums and explore the universal

SCHOOL OF THE ARTS

FACULTY

- James Shrosbree, M.F.A., Chair, Associate Professor of Art
- Matthew Beaufort, M.A., M.A., Associate Chair, Assistant Professor of Art
- Geoffrey Baker, A.T.D., Associate Professor of Art
- Shepley Hansen, M.S.C.I., B.F.A., Associate Professor of Art
- Juliette Daley, M.F.A., Assistant Professor of Art
- Dale Divoky, B.F.A., Assistant Professor of Art
- Gurdon Leete, M.F.A., Assistant Professor of Art
- Cherie Sampson, M.F.A., Assistant Professor of Art
- Kent Sugg, M.A., Assistant Professor of Performing Arts
- Gillian Brown, M.F.A., Adjunct Assistant Professor of Art
- Doug Adams, B.S., Adjunct Instructor of Fine Furniture Making
- Kasie Clemmons, B.A., Adjunct Instructor of Art
- Patricia Innis, M.F.A., Adjunct Instructor of Art
- Brian Smith, B.A., Adjunct Instructor of Art
- Laurel Farrin, M.F.A., Visiting Assistant Professor of Art
- Michael Cain, M.F.A., Artist-in-Residence
values of consciousness as expressed through the art of all cultures.

• Students interact with visiting artists from around the country and with established artists in the Fairfield area who have given the town a regional reputation as a center for the arts.

• Department seminars and forums help students develop tools for self-evaluation, forming the basis for professional careers in the arts.

• Our graduates have enjoyed careers as artists, art teachers and professors, designers, gallery directors, animators, and in video production, advertising and Web design.

• Studio space is provided for graduate students and most B.F.A. students.

Visual Arts: Ceramics

• Students work closely with faculty who have a national reputation in ceramics, frequently exhibiting around the country and teaching workshops at other universities.

• Students develop their skills in fully equipped studio areas including a ceramics center with high and low fire and raku kilns, and facilities for sculpting in clay, plaster, wood, and metal, including a sculpture woodworking shop, and a foundry with bronze-casting capabilities.

• Ceramics students learn these forming methods: wheelthrowing, handbuilding and press-mold methods.

Visual Arts: Photography

• In the photography courses, students develop their creativity as well as technical photographic skills which enable them to use the medium as an expressive tool.

• Students develop fundamental photographic skills in facilities which include a group B/W darkroom, photo studio, film processing room, and a small, advanced, color darkroom.

• Students also become proficient in the most advanced techniques of their field by learning digital photography in the computer lab.

Digital Media: Computer Arts—Video

• Students explore the language of sight and sound through the creative application of computer, photographic, and video technologies in our well-equipped digital media labs.

• The programs in Digital Media are deeply interdisciplinary, in order to prepare students for the digital, communications-intensive world of tomorrow in which the boundaries between video and film, computer animation and special effects, art, theater, music, and dance are dissolving.

• Students can become proficient in software applications for photo image editing, Web page design, video editing, video compositing, special effects, 3-D modeling, animation and graphic design.

• The industry demand for skilled computer artists in Internet Website design, feature films, television, CD-ROMs, advertising, and graphic design offers a wide range of career possibilities for aspiring commercial artists who graduate from this program.

• Project-oriented study allows for both fine art and commercial orientation using professional quality equipment.

• Video students take courses in screenwriting, film history, photography, video production, lighting, videography, computer graphics, and digital editing, and may participate in internships working at video production companies—preparing them for careers in the fields of film, video, animation, advertising, and Web design.

Theater Arts

• From their very first classes, students have opportunities to create the media and theater art of the future by participating in original, leading-edge projects that focus on enlightened values.

• Students receive advanced, practical training from faculty who are professionals—whether artists, writers, directors, performers, or producers—whose work in these fields has given them the strong basis from which to design profession-oriented programs.

• Students may work in a variety of areas in theater, video and intermedia arts—and faculty in these diverse areas work together to create cross-disciplinary learning environments to meet the unique interests of each student.

• Theater students take courses in playwriting, theater history, costume history and design, acting, directing, and production, and participate in a variety of innovative theatrical productions while learning skills that also apply to film and video.

Minor in Dance/Movement Theater

• From voice to limbs, the body is the actor’s tool of communication. The minor in Dance/Movement Theater is designed to strengthen the freedom and spontaneity with which the actor moves and controls the body. This development underpins traditional acting techniques, bridging dance, movement and theater. This minor is recommended for all theater students.

Courses in Maharishi Gandharva Veda Music

• The University offers a special dimension of music: courses in the classical music system of the ancient Vedic civilization. This system trains musicians and composers to create enjoyable music whose goal is to elevate and harmonize the per-
former, the audience, and the environment. Some of India’s finest musicians serve as artists-in-residence, teaching and performing bamboo flute, sitar, tabla and voice.

DEPARTMENTAL REQUIREMENTS

Graduation Requirements for the Bachelor of Arts Degree in Fine Arts with an Emphasis in Visual Arts

To graduate with a B.A. in Fine Arts with an Emphasis in Visual Arts, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the major are three semester-long modules (60 units) of course work as follows:

24 units of required courses:
- FA 201 Art and Nature
- FA 450 The Vocation of an Artist
- FA 205 Design Studio (16-unit course)

plus 4 units of:
- FA 301 Drawing Studio

and 4 units of:
- FA 311 Painting I

plus 4 units from the following:
- FA 331 Photography I
- FA 282 Video Production Studio

plus 4 units from the following:
- FA 341 Ceramics Studio I
- FA 351 Sculpture Studio I

plus 4 units from the following:
- FA 361 Digital Media Studio I
- FA 220 Survey of Electronic and Digital Art

plus 8 units from the following:
- FA 381 Art History I
- FA 382 Art History II
- FA 383 Art History III
- FA 384 Art History IV

plus 4 units from the following:
- FA 203 Understanding Art I
- FA 204 Understanding Art II

plus 4 units of additional course work in visual arts other than FA 398

plus field trips

All majors take a 3–5 day field trip each year to a major metropolitan area to visit museums and galleries as part of their degree requirements. (Field trip fee: approximately $150–250.)

plus visiting artists

Students meet several times a year with visiting artists who come to campus at the invitation of the School of the Arts. These meetings may fall outside regular class times, including Sundays or weekends between courses, but attendance is a degree requirement.

plus successful participation in a group exhibition

plus successful completion of a portfolio review

NOTE: All fine arts students are encouraged to take Art and Consciousness: Maharishi Vedic Science and the Fine Arts (FA 202) to fulfill one of the Maharishi Vedic Science electives required of all Maharishi University of Management. undergraduates. All visual arts students who need to fulfill the bachelor’s degree mathematics proficiency requirement are encouraged to take Geometry (MATH 266).

Graduation Requirements for the Bachelor of Arts Degree in Fine Arts with an Emphasis in Digital Media

To graduate with a B.A. in Fine Arts with an Emphasis in Digital Media, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the major are three semester-long modules (60 units) of course work as follows:

52 units of required courses:
- FA 201 Art and Nature
- FA 205 Design Studio (16-unit course)
- FA 220 Survey of Electronic and Digital Art
- FA 282 Video Production Studio
- FA 283 Lighting and Videography Studio
- FA 284 Editing Studio
- FA 331 Photography I
- FA 361 Digital Media Studio I
- FA 362 Digital Media Studio II
- FA 363 Digital Media Studio III

plus 4 units from the following:
- FA 203 Understanding Art I
- FA 204 Understanding Art II

plus 4 units of additional course work in visual arts other than FA 398

plus field trips
plus 4 units from the following:
• FA 381 Art History I
• FA 382 Art History II
• FA 383 Art History III
• FA 384 Art History IV

plus field trips
Students take a 3–5 day field trip each year to a major metropolitan area to visit museums, galleries, digital media studios, or video production facilities as part of their degree requirements. (Field trip fee: approximately $150–$250)

plus visiting artists
Students meet several times a year with visiting digital media film and video professionals who come to campus at the invitation of the School of the Arts. These meetings may fall outside regular class times, including Sundays or weekends between courses, but attendance is a degree requirement.

plus successful participation in a group exhibition

plus successful completion of a portfolio review

NOTE: All digital media students are encouraged to take Consciousness and Art: Maharishi Vedic Science and the Fine Arts (FA 202) to fulfill one of the Maharishi Vedic Science electives required of all Maharishi University of Management undergraduates. All digital media students who need to fulfill the bachelor’s degree mathematics proficiency requirement are encouraged to take Geometry (MATH 266), which is oriented to art.

Graduation Requirements for the Bachelor of Arts Degree in Fine Arts with an Emphasis in Theater Arts

To graduate with a B.A. in Fine Arts with an Emphasis in Theater Arts, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the major are three semester-long modules (60 units) of course work as follows:

36 units of required courses:
• FA 203 Understanding Art I
• THE 301 Acting I
• THE 321 Directing
• THE 330 Voice and Diction
• THE 332 Movement and Improvisation
• THE 345 Theater History
• THE 366 Play Production
• LIT 335 or 336 Shakespeare I or II
• FA 450 Vocation of the Artist

plus 4 units from the following:
• THE 302 Acting II
• FA 287 Screenwriting I
• FA 288 Screenwriting: Short Form

plus 4 units from the following:
• THE 341 Costume History and Design
• LIT 335 or 336 Shakespeare I or II
• FA 226 (LIT 363) The Art of Film
• FA 227 (LIT 365) History of Film

plus 4 units from the following:
• THE 303 Acting III
• THE 366 Play Production
• THE 390 Writing/Acting/Directing Workshop

plus 8 units from the following:
• FA 382 Art History II
• FA 383 Art History III
• FA 384 Art History IV

plus production work
Students participate in at least three main stage productions by acting and/or working on a technical crew.

plus field trips
Students take at least one 3–5 day field trip each year to a major metropolitan area in the Midwest to attend theatrical productions as part of their degree requirements. (Field trip fee: approximately $150–$250)

plus visiting artists
Students meet several times a year with visiting theater professionals who come to campus at the invitation of the School of the Arts. These meetings may fall outside regular class times, including Sundays or weekends between courses, but attendance is a degree requirement. In addition, a yearly acting workshop is conducted by a visiting professional which will require a workshop fee of $100.

NOTE: All fine arts students are encouraged to take Art and Consciousness: Maharishi Vedic Science and the Fine Arts (FA 202) to fulfill one of the Maharishi Vedic Science electives required of all Maharishi University of Management undergraduates.

Entrance Requirements for the Bachelor of Fine Arts Degree

There are only two entries into the B.F.A. program — in block 1 and block 6. Students interested in the B.F.A. program apply to the School the semester before they plan to
begin the B.F.A. Studio classes. Based on their work during the previous year, qualified students are accepted into the program. To be accepted into the B.F.A. program, students must have successfully completed the requirements for a B.A. degree in Fine Arts and have a cumulative grade point average of 3.0 or higher. The student must also submit a portfolio documenting examples of previous course work.

Graduation Requirements for the Bachelor of Fine Arts Degree in Visual Arts

To graduate with a B.F.A. in Visual Arts, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the major are five semester-long modules (100 units) of course work as follows:

60 units of course work listed above as required for the B.A. degree with an emphasis in Visual Arts

plus 4 units:
• FA 301 Drawing Studio

plus 4 units from the following (one course in addition to the courses required for the B.A.):
• FA 381 Art History I
• FA 382 Art History II
• FA 383 Art History III
• FA 384 Art History IV

plus 20 units from the following:
• FA 400 B.F.A. Studio and Seminar

plus 12 units of additional course work in visual arts with a maximum of 8 units of FA 398 and a maximum of 12 units beyond the required 20 units above of FA 400, and a maximum of 4 units in Maharishi Gandharva Veda music.

plus successful completion of an exhibition

plus a slide portfolio

Graduation Requirements for the Bachelor of Fine Arts Degree in Digital Media

To graduate with a B.F.A. in Digital Media, students must complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the B.F.A. are five semester-long modules (100 units) of course work as follows:

60 units of course work listed above as required for the B.A. degree with an emphasis in Digital Media

plus 4 units of:
• FA 301 Drawing Studio

plus 4 units of:
• FA 450 The Vocation of an Artist

plus 4 units from the following (one course in addition to the courses that may have been taken for the B.A.):
• FA 381 Art History I
• FA 382 Art History II
• FA 383 Art History III
• FA 384 Art History IV

plus 20 units of:
• FA 491 B.F.A. Studio and Seminar

plus 8 units of additional course work as approved by the School faculty chosen from:
• Visual Arts
• Video
• Theater Arts
• Maharishi Gandharva Veda Music (4 units maximum)
• FA 226 (LIT 363) The Art of Film
• FA 227 (LIT 365) History of Film
• FA 387 Screenwriting I
• FA 388 Screenwriting: Short Form

plus successful completion of an exhibition

plus a portfolio on slides, CD-ROM or videotape

Graduation Requirements for the Bachelor of Fine Arts Degree in Theater Arts

To graduate with a B.F.A. in Theater Arts, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the B.F.A. are five semester-long modules (100 units) of course work as follows:

60 units of course work listed above as required for the B.A. degree with an emphasis in Theater Arts

plus 40 units as follows:
20 units of course work:
• THE 491 B.F.A. Theater Arts Studio & Seminar

plus 12 units from the following:
• THE 302 Acting II
• THE 303 Acting III
• THE 390 Writing/Acting/Directing Workshop
• THE 366 Play Production
• FA 398 Fieldwork
plus 8 units from the following:
• FA 226 (LIT 363) The Art of Film
• FA 227 (LIT 365) History of Film
• LIT 335 Shakespeare I
• LIT 336 Shakespeare II
• LIT 367 Modern European Drama
• LIT 368 Modern American Drama
• WTG 322 Playwriting
• FA 387 Screenwriting I
• FA 388 Screenwriting: Short Form

plus production work
B.F.A. students participate in at least two main stage productions by acting and/or working on a technical crew.

Requirements for the Minor in Theater Arts
To graduate with a minor in Theater Arts, students must successfully complete 20 units of course work as follows:

4 units from the following:
• THE 366 Play Production

plus 8 units from the following:
• THE 310 Acting I
• THE 330 Voice and Diction
• THE 332 Movement and Improvisation

plus 8 units of courses in the Theater Arts

Requirements for the Minor in Dance/Movement Theater
To graduate with a minor in Dance/Movement Theater, students must successfully complete 20 units of course work:

• THE 332 Movement and Improvisation I (4 units)
• THE 333 Movement and Improvisation II
• THE 334 Performance Laboratory
• THE 335 Introduction to Physical Theater
• THE 336 Introduction to Movement Science

Requirements for the Minor in Fine Arts
To graduate with a minor in fine arts, students must successfully complete 20 units of course work as follows:

4 units of the required course:
• FA 201 Art and Nature

plus 4 units from the following:
• FA 202 Maharishi Vedic Science and the Fine Arts

plus 12 units of fine arts courses

Entrance Requirements for the Master of Arts Degree in Visual Arts

Applicants to the M.A. programs in Visual Arts (in drawing/painting, sculpture/ceramics and photography/digital media or new genres) need to show creative potential and the characteristics of self-sufficiency, self-motivation and vision, as evidenced by a written statement of purpose, three recommendations and a portfolio of artwork.

The portfolio can be either in the form of 10 to 20 slides or, if the applicant’s work is digital or time-based, a CD-ROM, 10 to 20 Web pages or a short videotape (no longer than 10 minutes). In the portfolio we like to see recent work in the area in which you wish to study. Depth of development of work is preferred over a diversity of pieces. The portfolio can be mailed or delivered to the School of the Arts office for the monthly faculty review process.

Admission to the M.A. program requires applicants to have completed a bachelor’s degree including 15 college-level studio art classes. Provisional admission may be considered for students showing a promising portfolio who do not meet the requirements but who possess a bachelor’s degree including a substantial number of studio art classes; in this case, the rest of the requirements may be made up through additional undergraduate classes at Maharishi University of Management, and students may enroll in graduate classes after passing a second portfolio review.

Graduation Requirements for the Master of Arts Degree in Visual Arts

To graduate with an M.A. in Visual Arts students must successfully complete all general requirements for the master’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) Program requirements are 38 units of course work as follows:

30 units of:
• FA 501 M.A. Visual Arts Studio
plus 8 units of:
 • FA 505 M.A. Seminar

plus field trips
Students take at least one 3–5 day field trip each year to a major metropolitan area to visit museums and galleries as part of their degree requirements. (Field trip fee: approximately $300–400)

plus acceptance of M.A. thesis

NOTE: In cases where the course of on-campus study lasts more than two semesters, students are required to successfully complete FA 505 M.A. Seminar or FA 515 M.F.A. Seminar for each additional semester they are enrolled.

Entrance Requirements for the Master of Fine Arts Degree
To be accepted for the M.F.A. program in Visual Arts, students must have successfully completed the M.A. degree and have the written consent of the program director.

Graduation Requirements for the Master of Fine Arts Degree in Visual Arts
To graduate with an M.F.A. in Visual Arts, students must successfully complete all general requirements for the master’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) Program requirements are 38 units of course work:

30 units of:
 • FA 511 M.F.A. Visual Arts Studio

plus 4 units of:
 • FA 515 M.F.A. Seminar

plus 4 units of:
 • FA 531 M.F.A. Thesis Preparation

plus field trips
Students take at least one 3–7 day field trip each year to a major metropolitan area to visit museums and galleries as part of their degree requirements. (Field trip fee: approximately $300–400)

plus completion of an M.F.A. thesis

NOTE: In cases where the course of on-campus study lasts more than two semesters, students are required to successfully complete FA 515 M.F.A. Seminar for each additional semester they are enrolled.

UNDERGRADUATE COURSES

VISUAL ARTS/DIGITAL ARTS COURSES

NOTE: 4-unit courses may be offered as 3-unit courses during shorter blocks. Materials fees are an estimated cost for the supplies that the student needs to provide for that course. Lab fees are required payments which must be made before the class begins. Field trip fees are also listed and are payable at the time of the field trip.

FA 201 Art and Nature
Students gain an appreciation for the mechanics of creation as experienced in the natural world and within the realm of one’s own awareness as they engage in creative expression and the making of art. Through the experience of an ongoing interdisciplinary project, inspired by their observation of nature, students prepare for a unique aesthetic presentation. Materials fee: $35. (4 units)

FA 202 Art and Consciousness: Maharishi Vedic Science and the Fine Arts
This course explores pure consciousness as the source of all creativity, and considers how consciousness expresses itself through the artist, artwork, viewer, and culture. Students connect their own experience to the art and ideas of well-known artists and thinkers, focusing on the insights of Maharishi Vedic Science. Through this process, they deepen their understanding of art and gain inspiration to develop their own art and life to the status of cosmic creativity in higher states of consciousness. (4 units)

FA 203 Understanding Art I
FA 204 Understanding Art II
Expressions of art are a celebration of life. These courses culture a deep appreciation—even a sense of awe—for all art forms. This survey of the arts features lectures, seminars, and research into the greatest painters, poets, and composers, whose works continue to inspire the public and stir the creativity of all aspiring artists. (4 units each)

FA 205 Design Studio
This course explores the deep structure of art through extensive studio work in drawing, 2-dimensional design, and 3-dimensional design under the direction of a multidisciplinary team of art faculty. Students analyze the most profound principles of art, creativity, and visual organization and apply them in a final project. This course is taken over 4 consecutive blocks. Materials fee: $80. Field trip fee: $150–250. (16 units)
FA 206 Contemporary Arts Workshop
In this intensive course, students will explore the contemporary practice of the arts that crosses disciplines and art forms from environmental art to interactive digital work. Glimpses of works by contemporary artists will be woven into the course while students gain direct experience creating experimental works individually and/or collaboratively. Guided workshops in performance, working with environments and objects as well as electronic media, will occur throughout the course along with opportunities for personal creative work. Students will expand the boundaries of their notions of art as well as their own potential as an artist. No prerequisites. (2–4 units)

FA 207 Advanced Design Studio
Students explore a variety of areas in graphics with the particular emphasis of each course specified by the instructor. Prerequisite: FA 205 and consent of instructor. Lab fee up to $100. (4 units)

FA 214 Fundamental Elements of Woodworking
In this basic woodworking course students will learn some of the fundamentals of working with wood. The course consists mainly of hands-on experience, but a theoretical component, including the structure of wood and how it influences woodworking, tree identification, etc., is also taught. Students will learn to use many hand tools and some power tools to create the following: spoons, mallets, breadboards, plates, bowls, a log bench and more. Carving, gluing up, curved work, lathe work, sharpening and other skills will be learned. Lab and materials fee: $20. (4 units) No prerequisite.

FA 220 Survey of Electronic and Digital Art
In this course we will explore the genre of electronic and digital art and how it is challenging and transforming contemporary art practices. A survey of the history of technology in the arts will be presented—from the beginnings of cinematography in the late nineteenth century through the birth of video art in the 1960s to current interactive and intermedia works by contemporary artists. We will look at the intersections between “new media” and traditional art forms. This course will include guest instructors, workshops, and a field trip. Field trip fee: $185. (4 units)

FA 221 Color
Through exercises in color relativity, light-dark relation, simultaneous contrast, color mixtures, optical mixtures, Bezold effect, and Weber-Fechner law, students learn to see, understand, and use the dynamics of color interaction to enrich their art. Materials fee: $75. (1–4 units)

FA 226 (LIT 363) The Art of Film
The Art of Film emphasizes film technique, such as the use of lighting, camera angles, and mise en scene. It takes the student out of the realm of the Saturday night “movie” and into the world of film as a major art form of the twentieth and twenty-first centuries. Our primary texts in this course will be the films themselves, including the masterworks of some of the world’s finest directors. Course requirements include the writing of film reviews, a short screenplay, and the analysis of key scenes from a film we will have viewed. (Same as LIT 363) (4 units)

FA 227 (LIT 365) History of Film
This film survey traces the evolution of primarily American and European cinema from the early days of Griffith and Eisenstein through the twentieth and into the twenty-first century. It includes examples of history-shaping movements such as Soviet formalism, German expressionism, French realism, Italian Neorealism, film noir, surrealism, and nouvelle vague. As in LIT 363, we will watch a selection of some of the finest “world masterpieces on film.” (Same as LIT 365) (4 units)

FA 229 Art and Culture
Students journey through the most inspiring creations of human culture in art, architecture, music, myth, and film. They examine how these works express both unique cultural values and universal values of consciousness. This course is taught as part of the Rotating University program, focusing on the art and culture of a particular region while in residence abroad. (Travel and lodging costs are additional.) The course can also be taught on the main campus, with a field trip to a major cultural center. Field trip fee: $150–250. Can be repeated for credit with permission of instructor. (1–4 units)

FA 231 Great Civilizations: The Quest for Heaven on Earth
In this course, students dive into the most inspiring creations of civilization—art, mythology, philosophy, and religion—highlighting humanity’s quest for an ideal society. The course begins with the ancient Vedic Civilization, which enjoyed Heaven on Earth, and continues with extraordinary videotapes and slide lectures on Indian, Chinese, Middle Eastern, Egyptian, African, European, and Native American cultures, and concludes by examining the possibilities for creating Heaven on Earth today.

By familiarizing students with many of the world’s cultures in the light of their own consciousness, this course prepares students to be global citizens of the 21st century, at home in the world family. This course helps students discover that history is
the story of the Self—their own Self—expressing itself in the waves of time. (4 units)

FA 282 Video Production Studio

In this introductory course, students produce, write, design, act in, direct, and edit original projects, individually and in groups. There is a special focus on pitching ideas, screenwriting fundamentals, team-building, casting, and emulating various directorial styles of assorted great filmmakers, all for the purpose of creating integrated artworks that can uplift and enlighten the world. Students also survey theories of visual aesthetics applied to television, the cinema, home video, and interactive media (including Internet media), and study great works of sequential art in a variety of formats. Can be repeated for credit with permission of the instructor. Prerequisite: consent of the instructor. (4 units)

FA 283 Lighting and Videography Studio

Lighting and camera work play key roles in conveying the message of a motion picture. In this course, students explore more deeply the nuances of meaning that they can create by various approaches to lighting, color, set design, and camera work, while continuing to conceive of, develop, and complete individual and group video productions. Students also analyze outstanding examples of lighting, camera work, and mise en scène in some of the greatest films in the history of cinema. Can be repeated for credit with permission of instructor. Prerequisite: FA 282 and consent of the instructor. (4 units)

FA 284 Editing Studio

Students work on location and in the studio on individual and group video productions. In this course, the emphasis on creatively polishing their work through careful picture and sound editing and the addition of appropriate post-production effects in the Department’s non-linear digital video editing lab. For inspiration, students analyze masterworks of cinematic montage. Can be repeated for credit with permission of instructor. Prerequisite: FA 282. (4 units)

FA 287 (LIT 264) Screenwriting I

In this course, students will create a real screenplay — not just a writing exercise — and will write with the full intention of producing a saleable script. They will study a number of models, including films, film clips, and a published screenplay. Before beginning the actual screenplay, students will compose a premise, a structure-step assignment, and a scene outline. After these initial steps, they will write a screenplay and take a final exam. (4 units)

FA 288 Screenwriting: Short Form

During the first two weeks of this course, students will learn how to structure and write films in two different genres: the short documentary subject and the short fictional piece. For the second two weeks, students will choose one of the above genres and write a script proposal, premise, scene outline, and 30-page screenplay. The course includes short model films, guest speakers, and a final exam. Any student may register who has either completed Comp I and Comp II or taken Screenwriting I, or has the permission of the instructor. Class limit: 12 students. (4 units)

FA 290 Animation

Animation is the art of graphics in motion. In this course, students will use computer tools for 2-D and 3-D animation to make moving works of art. We’ll also survey the history and aesthetics of animation by analyzing great works of animation. We’ll apply the principles of successful design to the creation and enhancement of the students’ animation projects. Prerequisite: basic computer skills. (4 units)

FA 291 Alternative Approaches to Video

Video as a medium and form of artistic expression goes beyond narrative story line and/or documentary video/film making into fourth dimensional time-based art. Since the 1960s, video has been adopted by visual artists who have taken their work out of the studios into everyday life. We will look at the history of that work and its transition into the digital/interactive domain, which crosses into other disciplines including conceptual art, performance, sculpture and multi-channel video installation. Students will gain theoretical knowledge and hands-on experience working with digital video technologies in the Mac lab. They will become aware of the layered possibilities in video as a unique art form in the electronic age, with the potential to inspire and transform individual and collective consciousness. (4 units)

FA 301 Drawing Studio

These courses are dedicated to developing the student’s powers of observation and imagination, abilities that are vital for all the arts. Fine arts majors take drawing courses as they advance through the curriculum. Topics may include figure drawing, still life drawing, drawing from nature, and imaginative drawing. The particular emphasis of each course is specified by the instructor. Can be repeated for credit with permission of instructor. Lab fee: $35. (1–4 units each)
FA 311 Painting Studio I
FA 312 Painting Studio II Prerequisite: FA 311
Aspiring artists connect with the world of canvas at the other end of the paintbrush. This course features painting outdoors. Previous experience in painting is not necessary. Materials fee: $20 per course. Can be repeated for credit with permission of instructor. (1–4 units each)

FA 316 Painting Studio III
Students address formal and conceptual solutions to the organization of painting. Exploration with materials and approaches is encouraged. Topics vary according to instructor but may include: still life painting, figurative painting, painting from nature, and painting from imagination. Materials fee: $50. (1–4 units each)

FA 331 Photography I
FA 332 Photography II Prerequisite: FA 331
FA 333 Photography III Prerequisites: FA 331 & 332
Students learn to use the photographic medium as an expressive tool. Students develop their work by learning basic camera techniques and darkroom procedures, while they are also introduced to a broad range of fine art photography. Students must have access to a 35mm camera. Photo II & III can be repeated for credit with permission of instructor. Lab fee: $150–$200 per course. (1–4 units each)

FA 341 Ceramics Studio I
FA 343 Ceramics Studio III Prerequisites: FA 341 & 342
FA 344 Ceramics Studio IV Prerequisites: FA 341 & 343
These courses introduce and develop the use of the basic tools, materials and processes of ceramics. Students explore form, surface, function and content in pottery and sculpture. Uses of hand-building and wheelthrowing along with different methods of glazing and firing are applied. Courses include research and student presentations. Can be repeated for credit with permission of instructor. Lab fee: $40 per course. (1–4 units each)

FA 342 Ceramics Studio II Prerequisite: FA 341
This is an intensive course in wheelthrowing.

FA 351 Sculpture Studio I
FA 352 Sculpture Studio II Prerequisite: FA 351
FA 353 Sculpture Studio III Prerequisite: FA 352
FA 354 Sculpture Studio IV Prerequisite: FA 353
Sculpture expresses the laws that structure the forms of nature. Students explore these organic forms and images from imagination—and create sculpture. Through exercises that expand the capacity to envision and create, students develop skills and understanding of methods and materials while gaining a deep appreciation of the nature, creation, and function of sculpture. Sculpture III and IV can be repeated for credit with the consent of the instructor. Materials fee: $30 per course. (1–4 units each)

FA 361 Digital Media Studio I
FA 362 Digital Media Studio II Prerequisite: FA 361
FA 363 Digital Media Studio III Prerequisite: FA 362
The computer is the high technology tool of the fine artist in the booming field of digital art. All genres of the arts have been impacted by “new media” from print media to interactive arts. This three-block module/survey course will focus on digital photography, graphics and Web design with an emphasis on the principles of successful design as applicable to the fine or commercial artist. Lab fee: to $100 per course. Prerequisites: familiarity with Mac platform, basic computer skills and consent of the instructor. Students are required to take all three blocks. (1–4 units each)

FA 364 Digital Media Studio IV
Students explore a variety of areas in digital arts with the particular emphasis in each course specified by the instructor. Prerequisites: FA 363 and consent of the instructor. Lab fee: up to $100. (4 units)

FA 371 Graphic Design Studio
Students explore the principles of graphic communications and apply them to advanced design projects. Prerequisites: FA 363 and consent of the instructor. Lab fee: up to $100. (4 units)

FA 381 Art History I
This course highlights great achievements of art and architecture in the ancient civilizations of Paleolithic Europe, Egypt, Greece, Rome, Islam, and the European Middle Ages. In each of these cultures, the quest for immortality created art that continues to inspire human consciousness. Materials fee: $40; field trip fee: $155–$250. (4 units)

FA 382 Art History II
This course focuses on the most inspiring creations of art and architecture in Europe from the Renaissance to the twentieth century, and also introduces traditional Chinese art. Students study how artists expressed both sacred and secular values in their quest for perfection in art and in life. Materials fee: $40; field trip fee: $155–$250. (4 units)

FA 383 Art History III
This course examines major movements in nineteenth and twentieth century European art, and also introduces traditional Japanese or African art. Students explore how modern art and culture express a search for higher states of consciousness, wholeness of life. Materials fee: $40; field trip fee: $155–$250. (4 units)
FA 384 Art History IV
This course explores traditions of world art, including Chinese, Indian, Islamic, African, and Native American art. Students are also introduced to the timeless tradition of Maharishi Sthapatya Veda design, the science of architecture and design in accord with Natural Law. All traditions are examined in the light of how they express both universal values and cultural values. Field trip fee: $155–$250. (4 units)

FA 390 Thesis Proposal
Prerequisites: a 3.0 GPA in the Visual Arts emphasis, completion of at least 48 units of fine arts courses, and approval by the major advisor one month before the course begins.

FA 391 Thesis Preparation Prerequisite: FA 390
FA 392 Thesis Presentation Prerequisite: FA 391
These courses give visual arts majors an opportunity to apply knowledge and experience in an extended project. Materials fees determined by instructor.

FA 398 Fieldwork
In this course students locate and make arrangements to study with an artist or facility, with the approval of their major advisor. Students document their experiences in sketchbooks and journals. Fieldwork must be completed at least two months before graduation. Prerequisite: consent of the School of the Arts faculty. (1–4 units)

FA 399 Art—Directed Study
Prerequisite: consent of the School of the Arts faculty. (variable units)

FA 400 B.F.A. Studio and Seminar
This course presents advanced practical and theoretical topics in drawing/painting, sculpture/ceramics, and photography/digital media or new genres. Field trip fee: $155–$250 per semester. Prerequisite: open to students accepted to the B.F.A. program. (4 units—may be repeated)

FA 450 The Vocation of an Artist
Students explore the vocation, role, and responsibility of the contemporary artist in the light of their own artistic aspirations. This course addresses current artistic trends and the potential for art and the artist in the future. Through workshops, students develop practical skills useful to careers in the arts, which include: portfolio preparation, presenting and photographing artwork, writing a resume and artist’s statement, and marketing and exhibiting art. The course features guest experts and field trips. Field trip fee: $75. (4 units)

THE 301 Acting I
In this course, students prepare themselves to be actors/artists through physical and vocal exercises and in intellectual understanding of the origin and theories of many different acting schools. Topics include the nature of consciousness, movement, gesture, voice, diction, and stage directions. (4 units—may be repeated)

THE 302 Acting II
This course presents in-depth study of dramatic action and its components—action, reaction, objectives, will, and units. Students engage in textual analysis and spend time in monologue and scene work as a means to experience directly the process of acting. (4 units—may be repeated)

THE 303 Acting III
This advanced course in acting presents numerous techniques for building interesting and profound characterizations, while continuing the work begun in previous acting classes—especially the work of developing the holistic consciousness of the actor. Extensive scene work, to be performed at the end of the course, is included. (4 units—may be repeated)

THE 321 Directing
Directors discover the deepest impulses which structure plot, character, and language in a play and communicate their vision to the actors and designers. This course teaches students to systematically bring together all the elements involved in a play. (4 units—may be repeated)

THE 330 Voice and Diction
This course covers training in quality of voice, articulation, breath, pitch, pronunciation, and textual analysis. Students work on monologues designed to meet their individual vocal needs. (4 units—may be repeated)

THE 332 Movement and Improvisation I
In this course, students begin to explore movement in the context of themselves, music, other students, and the environment of the theater. This course is designed to improve the actor’s and dancer’s ability to move in a creative way with increased ease and freedom, enhancing the depth with which a character is portrayed or a dancer dances. (4 units—may be repeated)

THE 333 Movement and Improvisation II
This course further extends the student’s ability to create
dance/ movement spontaneously through the exploration of space, weight, time, flow, and other fundamental principles of movement. Prerequisites: THE 332 and permission of the instructor. (4 units)

THE 334 Performance Laboratory
By incorporating their movement/dance/theater experience with varying aspects of performance, students will engage in studio/performance/critique cycles gradually becoming confident performers of improvisation. This process strengthens all performance skills. Prerequisites: THE 333, permission of the instructor. (4 units)

THE 335 Introduction to Physical Theater
Students will be introduced to mime, masque, gymnastics and other aspects of physical theatre. Open to all students. (4 units)

ESS 336 Introduction to Movement Science
This overview course presents the fundamentals of anatomy and physiology of exercise, skill acquisition and skill analysis, and care and treatment of common athletic injuries. Open to all students. (4 units)

THE 341 Costume History and Design
Costuming is the expressed value of the character’s social situation, time period, and personality. The course introduces the student to the principles of design and uses various examples from costume history, which students may use in designing costumes for productions, theater practicum, or directed study. (4 units)

THE 345 Theater History
The theater of each age is a product of the cultural forces lively at a given time and place. This course focuses on the plays and production techniques of different historical periods to uncover some of the dramatic characteristics of these periods. (4 units)

THE 366 Play Production
In this course, students become familiar with aspects of the whole—acting, set design, costumes, lighting—as they work to rehearse a play. They see how the meaning of a play unfolds from text to final performance as all the various aspects of theater come together to produce a holistic effect. (4 units—may be repeated)

THE 380 Special Topics
Periodically, seminars on special topics are offered by visiting professors or by resident faculty. (2–4 units—may be repeated)

THE 390 Writing/Acting/Directing Workshop
These three essential roles—writing, acting, and directing—are actually three aspects of one experience. And when writers, actors, and directors have been brought together in the less structured atmosphere of the workshop, it has often resulted in many excellent theater productions. (4 units) Prerequisites: THE 301 and THE 321.

THE 491 B.F.A. Theater Arts Studio & Seminar
This course presents advanced practical and theoretical topics in acting, directing, movement, voice, playwriting, and career development. Field trip fee: $95 per semester. Prerequisite: open to students accepted to the B.F.A. program. (4 units—may be repeated)

THE 499 Directed Study
Prerequisite: consent of the School of the Arts faculty. (variable units)

MUSIC COURSES

Note for all students: For upper level music courses, an in-depth academic project is included.

Note for Fine Arts students: If a student is working toward a B.F.A., 4 units of music courses can count toward studio credit for the degree. Please consult with your academic adviser before taking music courses for Fine Arts credit.

FUNDAMENTAL COURSES — no prerequisite

FA 260 (MVS 340, MVS 539) Maharishi Gandharva Veda Musicianship
What is beauty? Can musical talent be developed? Can we learn to perform without stage fright? These are some of the fundamental questions explored in this course—both theoretically and through practical experience. Students hear a colorful palette of Maharishi Gandharva Veda ragas as well as music from other cultures and time periods, to gain appreciation of the subtle, underlying principles of perception and aesthetics that govern ragas—and all music. Included in the course are daily practice time and regular music lessons in tabla and one of the following: bamboo flute, sitar, or voice, taught by resident performers of Maharishi Gandharva Veda music. (3–4 units)

FA 320 (MVS 342, MVS 562) Health Benefits of Maharishi Gandharva Veda Music
Exploratory research indicates that the effects of listening to Maharishi Gandharva Veda music include an increase in brain wave coherence, more integrated behavior, and a tendency of
mental activity to settle down and experience finer states of awareness. This course presents an overview of current research, while giving students the opportunity to study this music and explore their own responses to it. Included in the course are daily practice time and regular music lessons in tabla and one of the following: bamboo flute, sitar, or voice, taught by resident performers of Maharishi Gandharva Veda music. (3–4 units)

FA 403 (MVS 344, MVS 564) Ear Training
Awareness of pitch and tuning, vocal training, and studying the ten basic scales in Maharishi Gandharva Veda—these are the main aspects of this course. Students are introduced to the concepts of relative pitch versus perfect pitch, and learn to develop both skills through techniques of “horizontal” and “vertical” listening. Elementary keyboards skills are taught to help support pitch identification. Included in the course are daily practice time and regular music lessons in tabla and one of the following: bamboo flute, sitar, or voice, taught by resident performers of Maharishi Gandharva Veda music. (3–4 units, may be repeated)

FA 410 (MVS 343, MVS 563) Maharishi Vedic Science, Sound, and Music
Music has a powerful impact on human awareness. This course presents the profound correlation between sound, music, and consciousness. Special emphasis is given to the Shruti aspect of the Veda as the most coherent and primordial sound value in creation, and the mechanics of consciousness manifesting as sound and transforming into matter. The theoretical understanding is supported and integrated with the personal experience of hearing and playing the ancient art and science of Maharishi Gandharva Veda music. Included in the course are daily practice time and regular music lessons in tabla and one of the following: bamboo flute, sitar, or voice, taught by resident performers of Maharishi Gandharva Veda music. Prerequisite: at least one of the following—FA 260, FA 320, FA 410, or FA 403; or consent of the instructor. (3–4 units)

FA 322 (MVS 346, MVS 566) Rhythm in Maharishi Gandharva Veda Music
Students become fluent in the 5 major Gandharva rhythmic cycles and their variations and study basic principles of rhythmic improvisation in Maharishi Gandharva Veda music. Rhythm is explored in light of its fascinating correlation with the verses of the Veda and with rhythmic cycles in nature and in life. Included in the course are daily practice time and regular music lessons in one or two of the following: tabla, bamboo flute, sitar, or voice, taught by resident performers of Maharishi Gandharva Veda music. Prerequisite: at least one of the following—FA 260, FA 320, FA 410, or FA 403; or consent of the instructor. (3–4 units)

FA 323 (MVS 347, MVS 567) Time Theory in Maharishi Gandharva Veda Music
Time Theory prescribes specific ragas to be performed at corresponding times of day or seasons. Several ragas for various times will be studied in detail, to learn to differentiate the melodic patterns and subtle musical characteristics of each one. Included in the course are daily practice time and regular music lessons in one or two of the following: tabla, bamboo flute, sitar, or voice, taught by resident performers of Maharishi Gandharva Veda music. Prerequisite: at least one of the following—FA 260, FA 320, FA 403; or consent of the instructor. (3–4 units, may be repeated)

ADVANCED COURSES—may be offered anytime as needed

FA 484 (MVS 451, MVS 571) Maharishi Gandharva Veda Music Studio
This course is for students who are well on their way to completing the major in Maharishi Vedic Science with emphasis in Maharishi Gandharva Veda music. It is designed to help students focus on specific aspects of musical development under the guidance of the faculty. Included in the course are daily practice time and regular music lessons in one or two of the following: tabla, bamboo flute, sitar, or voice, taught by resident Gandharva musicians. Prerequisites: at least 6 Maharishi Gand-
FA 493 (MVS 452, MVS 572) Recital Preparation
This course gives students the opportunity to polish their performance skills in preparation for a student recital. Included are practical considerations such as advertising, stage preparation, sound checks, etc., as well as oral presentations and written assignments related to the performance. Daily practice time and regular music lessons in one or two of the following: tabla, bamboo flute, sitar, or voice, taught by resident performers of Maharishi Gandharva Veda musics are also included in the course. Prerequisites: at least 4 Maharishi Gandharva Veda courses and consent of the instructor. (2–4 units; may be repeated)

GRADUATE COURSES

Visual Arts/Digital Arts

FA 501 M.A. Visual Arts Studio
This course allows M.A. students to pursue studio work in ceramics/sculpture, drawing/painting, or photography/digital media or new genres under the guidance of graduate faculty advisors. Materials fee: $200 each time taken. (1–8 units—may be repeated)

FA 505 M.A. Seminar
Students examine topics of a critical, historical, theoretical, or experimental nature, relating them to the theme of consciousness. This course involves reading, writing, and preparing presentations. A major field trip is part of this seminar. (Students are responsible for the expenses incurred by traveling.) Field trip fee: approximately $250–$400. (2–4 units—may be repeated)

FA 511 M.F.A. Visual Arts Studio
This course allows M.F.A. students to pursue studio work in ceramics/sculpture, drawing/painting, or photography/digital media or new genres under the guidance of graduate faculty advisors. Materials fee: approximately $200 each time taken. (1–8 units—may be repeated)

FA 515 M.F.A. Seminar
Same as FA 505, but for M.F.A. students. Field trip fee: approximately $250–$400. (4 units—may be repeated)

FA 531 M.F.A. Thesis Preparation
The thesis preparation course allows graduating students to work with one another as well as the graduate faculty to prepare and refine the elements of their thesis—the written thesis, the Unified Field Chart, the oral presentation, and the organization of the solo exhibition. Materials fee: $75–$100. Prerequisite: consent of the School of the Arts faculty. (2–4 units)

FA 598 Fieldwork
In this course students locate and make arrangements to study with an artist or facility, with the approval of their major advisor. Students document their experiences in sketchbooks and journals. Fieldwork must be completed at least two months before graduation. Prerequisite: consent of the School of the Arts faculty. (2–8 units)

FA 599 Directed Study
Prerequisite: consent of the School of the Arts faculty. (variable units)
The School of Business and Public Administration offers a Bachelor of Arts in Management, a Master of Business Administration, and a Ph.D. in Management. Each of these degree programs is oriented toward the achievement of specific student learning outcomes through real-world-oriented, active learning projects. In the M.B.A., students apply their knowledge to improve the performance of an actual organization. The Ph.D. in Management prepares action-researchers who can enrich the understanding and practice of management with new knowledge about the highest levels of performance for the individual, the team, and the organization as a whole. All of these programs integrate contemporary developments in the discipline with study and experience of the Unified Field of all the Laws of Nature, the source of the infinite organizing power of Natural Law, which is available in the Transcendental Consciousness of everyone.

SPECIAL FEATURES

• **Engagement and Entrepreneurship**—The programs and courses of the School of Business and Public Administration are oriented around real-world, active learning projects. Undergraduate majors and first-year M.B.A. students write business plans for their own entrepreneurial ventures. Second-year M.B.A. and Ph.D. students conduct business process improvement consulting projects.

• **Ethics and Environment**—The curriculum explores issues of ethical integrity, social responsibility, and environmental sustainability to prepare business leaders to be stewards of society and the environment.

• **Management by Natural Law**—Management training at Maharishi University of Management makes use of the latest discoveries about how Natural Law administers all levels of creation, and trains students to utilize the support of Nature, good fortune, to enable them to most easily fulfill their goals.

• **Enlightenment and World Peace**—Maharishi University of Management is the leading university in the world specializing in development of human consciousness. It is an ideal place to learn how to create and study the transformation of organizations and society through developing and utilizing human potential.
BACHELOR OF ARTS IN MANAGEMENT

Courses in the management curriculum encompass an international perspective to help prepare graduates to function effectively in the world’s varied cultural and business settings. Students are trained to be broad thinkers, harmonious contributors to teams, and experts in creative change. The undergraduate courses are grouped into three modules. In Module I, Skills for Success in Personal and Professional Life, students learn practical skills for successful functioning in the modern world. In Module II, Business Foundations students grow in knowledge of the legal, economic, and social environment of business life. In Module III, Entrepreneurship, students gain knowledge and experience of starting and growing companies by studying and creating business plans.

MASTER OF BUSINESS ADMINISTRATION

The first year of the M.B.A. at Maharishi University of Management emphasizes Ecological Entrepreneurship. The second year includes electives in one or more areas and a module of courses on Process Management for Entrepreneurial Firms. Issues of ethical integrity, social responsibility, and environmental sustainability are integrated in all our business courses.

Ecological Entrepreneurship

Because society is increasingly recognizing the importance of sustainability, new opportunities abound, but an entrepreneurial approach is necessary to recognize and implement them. The curriculum of Maharishi University of Management offers a fuller range of entrepreneurial business courses to train students to create new businesses with life-sustaining products and services. Maharishi University of Management embraces the vision that business can be “green both ways” making money and operating in harmony with nature. Each of our entrepreneurial business courses teaches principles and examples of green business and Natural Capitalism — “the next industrial revolution.” Over the course of a semester, students apply the knowledge from their business courses to create business plans. Experienced business managers, as well as a team of faculty, provide mentoring and feedback at checkpoints throughout the business plan project.

Process Management for Entrepreneurial Firms:

Whereas the first year of the M.B.A. trains entrepreneurs to create visionary new ventures, the second year of the M.B.A. includes a module of courses on Organizational Improvement. These courses prepare entrepreneurs to design and manage new enterprises through the application of business process improvement methods for achieving reliability, efficiency and continuous innovation. This module focuses on contemporary best practices in customer-centered approaches to improving business performance. The course work introduces managers to a view of business organizations as a system of interrelated processes through which the work of the organization gets done. To enhance customer satisfaction and improve business outcomes, an emerging firm must refine and improve its business processes. The emphasis on improving business performance through improving business processes is a central defining feature of the Six Sigma approach to business-performance improvement that is being increasingly adopted by leading companies worldwide, including Motorola, General Electric, FedEx, Dupont and many others. Smaller companies are increasingly being required to adopt their own effective Six Sigma programs in order to qualify as suppliers to these larger Six Sigma corporations. The Six Sigma approach can help entrepreneurial firms to balance structure with continuous innovation. The Organizational Improvement module includes a practicum in which students apply process improvement techniques as consultants to an actual business.

PH.D. IN MANAGEMENT

The program is designed to prepare students for careers as professors, consultants, or researchers. The focus of the curriculum is on transforming the performance of individuals and organizations. Today developing and utilizing human potential is widely recognized as the cornerstone of corporate transformation and economic development. Maharishi University of Management is the leading university in the world specializing in development of human consciousness. It is an ideal place to learn how to unfold full human potential and create and study the transformation of organizations.

The Ph.D. in Management program at Maharishi University of Management is taught in the light of Maharishi Vedic Management — the knowledge of the total intelligence of Nature. Natural Law automatically manages the infinitely complex and evolving universe without strain and without mistakes. Through studying the theoretical and practical aspects of Maharishi
Vedic Management, including the Transcendental Meditation program, students personally grow in better health, in clearer thinking, greater creativity, moral development, and wisdom.

The Ph.D. program prepares each student to conduct original and significant research through courses in research methods and statistics. Each student is encouraged to identify a research topic early in his or her studies so that the research papers throughout the program can focus on this chosen topic. Students in the Ph.D. program are trained in principles and practices for successful college teaching and adult education.

Program Structure

The Ph.D. in Management requires four semesters of full-time study in residence at Maharishi University of Management. As part of the required course work in the fourth semester, students undertake a written comprehensive exam and oral qualifying exam. During the fourth semester, the student has the optional opportunity to take electives in other areas of business graduate courses that support the student’s academic and research goals. When a student successfully completes an oral qualifying examination, the student is advanced to Ph.D. Candidate status and tuition is reduced. When a dissertation proposal is accepted, the student is advanced to Ph.D. researcher status. The Ph.D. researcher must complete an oral defense of the dissertation, and the dissertation committee, Graduate School, and Library must approve the dissertation.

DEPARTMENTAL REQUIREMENTS

Entrance Requirements for the Management Major or Minor

Before taking any courses in the management major or minor, students must successfully complete the following prerequisites: Computer and Internet Essentials (ED 108), College Composition II (WTG 192), and Functions and Graphs I (MATH 161).

Graduation Requirements for the Bachelor of Arts Degree in Management

To graduate with a B.A. in Management, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) As part of these requirements three semesters (60 units) of course work must be completed as follows.

The required undergraduate courses are grouped into three modules. In the Skills for Success in Personal and Professional Life module students learn practical skills for successful functioning in the modern world. In the Business Foundations module students grow in knowledge of the legal, economic, and social environment of business life. In the Entrepreneurship module, students gain knowledge and experience of starting and growing companies by studying and creating business plans.

Required: Six courses (20 units) in the Skills for Success in Personal and Professional Life module

- MGT 200 Principles of Business Success
- MGT 201 Business Communication Skills
- MGT 220 Principles of Economics
- MGT 312 Management and the Environment
- MGT 314 Statistics

Required: Five courses (20 units) in the Business Foundations module

- MGT 422 Business Economics
- MGT 426 Accounting for Decision-Making
- MGT 428 Business Law and Ethics
- MGT 429 Human Resource Management
- MGT 482 Management and Organization

Required: Five courses (20 units) in the Entrepreneurship module

- MGT 346 Career Strategies
- MGT 425 Marketing Management
- MGT 430 Financial Management
- MGT 431 Entrepreneurship
- MGT 432 Entrepreneurship Project

After completing a minimum of 40 units in the Management major, students may interview for business positions and earn internship credit of up to 20 units toward their bachelor’s degree. This is an opportunity for students to apply the knowledge gained in the Management major in a workplace setting.

Graduation Requirements for the Minor in Management

To graduate with a minor in management, students must complete one semester (20 units) of course work in management from the list of required courses above.

Bachelor of Arts Degree in Management at the International Program Site in Beijing, China

In 2001, Maharishi University of Management entered into a collaboration agreement with Oxbridge University Business School (OUBS) in Beijing. As part of this collaboration, the University is partnering with OUBS to offer third and fourth year undergraduate courses at the OUBS campus, leading to a
degree from Maharishi University of Management. Students at this international program site are subject to the charges, policies, and degree requirements of Maharishi University of Management. For additional information about the OUBS please see the OUBS catalogue and OUBS home page at http://oubs.com.cn/

Entrance Requirements for the Bachelor of Arts Degree in Management at the International Program Site in Beijing, China

Students must apply to and receive admission from Maharishi University of Management for enrollment in third and fourth year courses in the Bachelor of Arts degree program. Admission to Maharishi University of Management is based on recommendations and cumulative academic GPA of at least 2.5 in OUBS courses. Students must also demonstrate proficiency in English through TOEFL 550, or IELTS 5.5, or 70/100 on the OUBS admission test.

Graduation Requirements for the Bachelor of Arts Degree in Management at the International Program Site in Beijing, China

To graduate with a B.A. in Management, students must successfully complete 166 units of course work. As part of these requirements, the following course work must be completed:

For those students starting the third year of the Bachelor of Arts Degree program, Fall 2003:

General Education requirements
• WTG 192 College Composition II (OUBS course)
• PC 1001 Pre-Calculus I (OUBS course)
• MAT 211 Statistics (OUBS course)
• COM 101 Windows Application I (OUBS course)
• COM 102 Windows Application II (OUBS course)
• MVS 100 Science of Creative Intelligence (4 units)
plus the following:
• 8 units of Natural Law Seminar
• 12 units of course work in Maharishi Vedic Science (which can include MGT 205 Principles of Success in Management)

Required Courses in Management
• MGT 202 Management Information Systems (OUBS course)
• ACC 201 Principles of Accounting I (OUBS course)
• ACC 202 Principles of Accounting II (OUBS course)
• ECO 201 Principles of Microeconomics (OUBS course)

For those students starting the fourth year of the Bachelor of Arts Degree program, Fall 2003:

General Education requirements
• PC 1001 Pre-Calculus I (OUBS course)
• MAT 211 Statistics (OUBS course)
• COM 101 Windows Application I (OUBS course)
• COM 102 Windows Application II (OUBS course)
• MVS 100 Science of Creative Intelligence (4 units)
plus the following:
• 4 units of Natural Law Seminar
• 4 units of course work in Maharishi Vedic Science (which can include MGT 205 Principles of Success in Management)

Required Courses in Management
• MGT 346 Career Strategies
• MGT 382 Management and Organization
• MGT 424 Data Analysis for Managers
• MGT 428 Legal Environment of Business
• MGT 429 Human Resource Management
• MGT 430 Financial Management
• MGT 431 Entrepreneurship
• MGT 432 Entrepreneurship Project
• MGT 498 Internship
plus additional units of internship and/or electives

Entrance Requirements for the Master of Business Administration Degree

Applicants must have an undergraduate degree. Acceptance is based upon quality of undergraduate performance, aptitude test scores, or work experience and other achievements. A TOEFL score of at least 550 (paper-based) or 213 (computer-based) is required if a student’s native language is not English.
English assessment by the Maharishi University of Management Admissions Office can be substituted for the TOEFL test. Graduate Management Admission Test (GMAT) or Graduate Record Examination (GRE) is required. Before enrolling for the first semester of the M.B.A., students should be familiar with principles of economics, from a prior college course or from reading a principles of economics textbook.

Maharishi University of Management offers a full-time site-based distance education M.B.A. in conjunction with Maharishi Institute of Management, India. Distance education students have the option of taking the second year at Maharishi University of Management’s campus in Fairfield, Iowa.

Graduation Requirements for the Master of Business Administration Degree

To graduate with an M.B.A., students must successfully complete all general requirements for the master’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) As part of these requirements, students must complete all the required management course work listed as follows:

• MGT 417 Mathematics for Business (may be waived by exam)
• MGT 422 Business Economics
• MGT 424 Data Analysis for Managers
• MGT 425 Marketing Management
• MGT 426 Accounting for Decision-Making
• MGT 428 Business Law and Ethics
• MGT 429 Human Resource Management
• MGT 430 Financial Management
• MGT 431 Entrepreneurship
• MGT 432 Entrepreneurship Project
• MGT 500 Organizational Excellence
• MGT 502 Improving Business Process
• MGT 534 Career Development
• MGT 580 Implementing Business Process Improvement

• Additional units comprising a combination of specialization courses in electronic business, human resources, marketing, accounting/finance, other electives, and Management Curricular Practical Training (CPT) Internship.

The M.B.A. degree requires a minimum of 74 units of management course work, which may include Management CPT Internship. For students with a prior degree in a business-related field, up to half of these units may be waived by the M.B.A. director. Seventy-four units of management courses can be completed in 2 years of full-time study in the daytime program or in 3 years in the Evening/Weekend M.B.A. program.

Graduation Requirements for Students Completing the Master of Business Administration Degree at Maharishi Institute of Management in India

The Management course work consists of Required Courses (56 units) and Elective Courses (24 units).

Required Courses (56 units):
• MGT 423 Management Communication Skills
• MGT 512 Government and Business
• MGT 426 Accounting for Decision-Making
• MGT 424 Data Analysis
• MGT 427 Operations Management
• MGT 523 Quantitative Analysis for Managers
• MGT 422 Business Economics
• MGT 541 Management Information Systems
• MGT 430 Financial Management
• MGT 566 Human Resource Management
• MGT 425 Marketing Management
• MGT 582 Management and Organization
• MGT 594 Strategic Management I
• MGT 595 Strategic Management II

Graduate Certificate and Specialization Programs

A Graduate Certificate can be earned by taking 18 or more units in one of the areas of specialization listed below. A specialization can be earned by taking at least 12 units in one of the listed specialization areas.

Students who complete certificate/specialization requirements as part of the M.B.A. degree can receive both the M.B.A. and the certification/specialization noted on their transcript.

Specializations within the M.B.A. include Electronic Business, Human Resources, Finance/Accounting, International Business, and Marketing.

The Electronic Business Specialization prepares graduates to:
• Formulate profitable business strategy around technology-enabled processes
• Design and implement e-business solutions using Web pages, e-commerce server systems, electronic payment systems, and integration of Web transactions to backend systems
• Apply principles of human computer interaction and Internet marketing to build effective Web interfaces
• Improve business processes and integrate business systems
• Access and analyze business information for decision-making
• Understand the business potential of emerging technologies and make technology decisions based on financial, strategic, and organizational considerations
• Evaluate and acquire e-business technology products and services
• Acquire and direct technical employees or contractors
• Deal with inter-organizational relationships: partners, customers, suppliers
• Effectively plan and manage projects.

The Human Resources Specialization prepares graduates to:
• Develop performance management systems to enhance individual and team performance
• Utilize job analysis information in staffing and job design
• Design and deliver effective training programs
• Administer compensation and benefit systems
• Understand legal issues in employee/employer relationships
• Utilize constructive methods of negotiation and dispute resolution
• Facilitate organizational change and process improvement
• Introduce employees to unique technologies for human resource development and health from Maharishi Vedic Science
• Take the PHR Certification Exam of the Society of Human Resource Management.

The Finance/Accounting Specialization prepares graduates to:
• Understand and apply the knowledge and various techniques involved in being a successful financial executive; such as strategic value chain analysis; strategic SWOT analysis; risk assessment and hedging techniques; and stakeholder analysis
• Understand and apply the various knowledge and techniques involved in being a successful accounting executive, such as sales, contracts, commercial paper, suretyship, and secured transactions; audit planning, internal control, audit evidence, audit reports, and statistical sampling techniques; Generally Accepted Accounting Principles (GAAP) and the conceptual framework of accounting; managerial, cost, tax and nonprofit accounting techniques; and professional responsibilities
• Qualify for either the Certified Public Accountant (CPA), Certified Management Accountant (CMA), and/or Certified Financial Manager Certification Examination.

The International Business Specialization involves courses in International Business, International Marketing and International Finance. It prepares students to:
• Formulate and implement strategy for the multi-national enterprise
• Understand the principles and institutions of international trade and international investment
• Perform effectively in inter-cultural environments.

The Marketing Specialization provides an in-depth understanding of the customer, company, and competition interaction from the marketing perspective. This specialization prepares graduates to:
• Understand the cultural, political, and strategic issues involved in overseas markets
• Prepare strategies and tactics for all stages of the product life cycle
• Position the firm in competitive space for maximum advantage
• Design and implement qualitative and quantitative research methodologies to test all aspects of the marketing mix, competitive offerings and new product ideas
• Analyze data from a marketing perspective
• Design online and offline approaches for a Web site
• Understand advertising strategy, design ad campaigns to execute ad strategy, and evaluate responses and cost effectiveness of an ad campaign in various media
• Work in an integrated manner with suppliers, customers and cross-functional teams to enhance marketing effectiveness and business productivity.

Courses in the Electronic Business Area:
• MGT 508 Managing Information Technology
• MGT 544 Internet and Network Technologies
• MGT 545 Database Management Systems
• MGT 547 Systems Analysis and Design
• MGT 548 Electronic Commerce
• MGT 549 Topics in MIS
• MGT 552 Designing Usable Web Interfaces
• MGT 575 Internet Marketing

Courses in the Human Resources Area:
• MGT 501 Leading Organizational Change
• MGT 510 Leadership
• MGT 534 Career Strategies
• MGT 536 Training Design
• MGT 581 Employment Law
• MGT 583 Mediation and Negotiation
• MGT 585 Compensations and Benefits
• MGT 589 Staffing
• MGT 598 Internship
Courses in the Finance/Accounting Area:
- MGT 414 Taxation
- MGT 440 Intermediate Accounting I
- MGT 441 Intermediate Accounting II
- MGT 445 Auditing I
- MGT 473 Cost Accounting I
- MGT 496 CPA/CMA Review
- MGT 551 Corporate Finance
- MGT 560 Money and Capital Markets
- MGT 562 International Finance
- MGT 568 Investment Management

Courses in the Marketing Area:
- MGT 573 Advertising
- MGT 574 Marketing Research
- MGT 575 Internet Marketing
- MGT 576 Strategic Marketing
- MGT 578 Marketing Management
- MGT 579 International Marketing

Courses in the Entrepreneurship Area:
- MGT 422 Business Economics
- MGT 424 Data Analysis for Managers
- MGT 426 Accounting for Decision-Making
- MGT 428 Business Law and Ethics
- MGT 430 Financial Management
- MGT 431 Entrepreneurship
- MGT 432 Entrepreneurship Project
- MGT 566 Human Resource Management
- MGT 578 Marketing Management
- MGT 582 Management and Organization

Entrance Requirements for the Ph.D. Degree in Management
- M.B.A. or masters degree in a business–related field.
- GMAT or GRE.
- TOEFL score of at least 600 (paper-based) or 250 (computer-based) is required if a student’s native language is not English. English assessment by the University’s Admissions Office can be substituted for the TOEFL test.
- At least two years of professional work experience in a business is preferred.

Graduation Requirements for the Ph.D. Degree in Management
To graduate with a Ph.D. in Management students must successfully complete all general requirements for the doctoral degree. (Please refer to “Degree Requirements” in “Academic Policies.”) As part of these requirements, students must complete two years of full-time graduate study consisting of the following courses:
- MGT 500 Models of Organizational Excellence
- MGT 502 Improving Business Processes
- MGT 507 Assessment and Evaluation
- MGT 555 Human Resource Development
- MGT 580 Implementing Business Process Improvement
- MGT 601 Organizational Behavior
- MGT 603 Leadership
- MGT 605 Advanced Seminar in Management
- MGT 630 Linear Regression
- MGT 631 Analysis of Variance
- MGT 635 Experimental Research Design
- MGT 636 Qualitative Research Design
- MGT 672 Organizational Development
- MGT 689 Preparation for Comprehensive Examination
- MGT 690 Preparation for Qualifying Examination
- MGT 692 Seminar in Writing and Teaching
- MGT 698 Research Practicum
- MGT 700 Dissertation Proposal Preparation
- MGT 701 Dissertation Research
- A qualifying examination (MGT 690). (When successfully completed, the student is advanced to Ph.D. candidate status.)
- Dissertation proposal (MGT 700) is prepared and submitted for approval. (When accepted, the student is advanced to the Ph.D. researcher status.)
- Original research and dissertation preparation (MGT 701)
- An oral defense of the dissertation
- Acceptance of the dissertation by the Graduate School and the Library

MANAGEMENT COURSES

NOTE: 4-unit courses may be offered for 3 units during shorter blocks.

Undergraduate Courses

MGT 145 Locating the Source of Business Success in Atma
Every student wants to find a career that is exciting, rewarding, and fulfilling. In this course, students realize that business is more than mere buying and selling. At its heart, business involves people expressing their creative intelligence in an infinite variety of ways. Students are encouraged to reflect on their own creative ideas and to see how these ideas can be applied in
the business world. Students learn that business can simultaneously fulfill the desires of society, the company, and the employees.

This course has a number of special features. Leading entrepreneurs from Fairfield’s business community speak on the link between business success and the development of consciousness and creativity. Students see selected videotapes on quality management and other topics. Dividing into groups, they visit local retail stores to evaluate the levels of customer service and discover the greater effectiveness of the enlightened management principles described by the Science of Creative Intelligence. (2 units) (Distribution Area: Social Sciences)

MGT 200 Principles of Business Success
This course provides a holistic overview of business for new management majors or students from other majors. Principles of marketing, finance, operations, accounting, and human resources are taught in the perspective of an integrated business strategy and are illustrated by lively examples from videos, case studies, guest speakers, and field trips. (4 units)

MGT 201 Business Communication Skills
Effective communicators are skilled both at informing and inspiring other people. This course provides instruction and practice in making oral and written presentations based on the principle that ideal communication is a frictionless flow that nourishes both sender and receiver. Topics include word processing and presentation software; library and Internet research skills; oral presentations; writing letters, reports, proposals, and manuals; and the principles of ideal communication. (4 units)

MGT 203 Personal Finance
This course covers the knowledge which every individual needs to make intelligent and responsible decisions concerning personal and family finances. Topics include major purchases such as buying a home or a car, credit, insurance, investments, retirement planning, selecting careers and educational institutions, and obtaining employment. Real-world applications are structured throughout the course through personal planning exercises, field trips, and guest speakers. (2–4 units)

MGT 205 Maharishi’s Absolute Theory of Administration
Enlivening Natural Law in individual and collective consciousness can prevent problems and lead to success in business and government organizations. This course provides the knowledge of how the infinite organizing power of Nature can be utilized effectively. Topics include support of Nature, fulfillment, creativity, leadership, health, and creating Heaven on Earth. (4 units)

MGT 220 Principles of Economics
In this course, students will be introduced to the operation of market-based economies. The course aims at providing an understanding of the market system as a means of allocating a society’s human and non-human resources among competing areas of need. Topics in the course include product markets, resource markets, money & capital markets, and foreign exchange markets. In addition to the free functioning of the market system, students will be exposed to the inefficiencies in the market system that give rise to different kinds of government interference in markets, and the ways in which governments intervene to correct imbalances. (2 units)

MGT 312 Management, Communication and the Environment
The motto for this course is the famous adage, “Think globally, act locally.” The students will acquire basic knowledge of life cycle costing, environmental accounting, environmentally sensitive design and ISO 14,000 certification (an environmentally based European business standard). Class projects, guest lecturers and case study exercises will teach the student about environmental challenges, green consumption and opportunities for building business partnerships with environmental groups. Mastery over the course material will be gained by explaining concepts to the general public through the media. (4 units)

MGT 314 Statistics
Statistics is one of the basic quantitative tools available to every business manager. Powerful techniques based on the underlying orderliness of nature equip students with skills to solve a variety of important business and economic problems. Topics include probability, descriptive statistics, sampling, statistical estimations, correlation and regression. (4 units) Prerequisite: MATH 161

MGT 315 Financial Accounting
Accounting systems provide financial information to guide management planning, decision-making, and control. Financial statements are essential for reporting to management, stockholders, creditors, and the government. Topics include fundamentals of bookkeeping, internal control, generally accepted accounting principles, inventory valuation, receivables and payables, depreciation, amortization, stocks and bonds, inflation account-
ing, and the interpretation and analysis of financial statements. (4 units)

MGT 316 Managerial Accounting
This course provides analytic tools and techniques to assist management in planning, decision-making, and control. Topics include cost-volume-profit analysis, manufacturing costs, job order and process costing, standard costing and variance analysis, variable and full costing, fixed and flexible budgets, responsibility accounting, direct and absorption costing, and the behavioral implications of management accounting systems. (4 units)

MGT 318 Operations Management
In this course students are taught how to bring success to manufacturing and service operations. Topics covered in this course include the design of production systems, forecasting, planning and controlling operations, linear programming, inventory management, scheduling and control with materials requirements planning, network analysis and queuing analysis, quality control, and maintenance management. (4 units)

MGT 319 Microeconomics
Microeconomic principles are fundamental to many theoretical and applied areas of management, such as operations research, marketing, accounting, finance, production management, and many areas of public management and policy. Topics include consumer choice, consumer demand, supply and demand analysis, cost analysis, marginal analysis, output and pricing decisions, market structure, competition, wages, taxation, and resource allocation decisions. (4 units)

MGT 320 Macroeconomics
Macroeconomics studies the principles governing the behavior of the national economy and its interaction with other economies. It analyzes the context within which every business or organization must function. Topics include aggregate supply and demand analysis; fiscal and monetary policy; money and banking; Keynesian, monetarist, and supply-side economics; the business cycle and macroeconomic forecasting; economic growth; international trade; the international monetary system; economic development; and comparative economic systems. (4 units)

MGT 345 Data Management Systems
This course acquaints students with data management systems and application packages, such as spreadsheets, project management, resource management, graphics, planning, and accounting. Students use large systems packages as well as microcomputers and learn to formulate problems using these programs. In this way students are able to make maximum use of computer technology on the levels of planning, decision-making, organizing, implementation, and control. (2–4 units)

MGT 346 Career Strategies
The course covers current concepts and issues related to career planning and placement. Students develop practical skills for their own career development in light of current hiring trends and human resource decision systems. They assess their individual goals, career direction, skills and abilities and then design an action plan for achieving their next career target. Students conduct occupational and educational research, and locate Internet and networking resources related to the profession of choice. Students learn how to gain maximum effectiveness in their resumes, portfolios, networking, and interviewing; and they practice applying these techniques to obtain a job or internship or to pursue an entrepreneurial initiative. (2 units)

MGT 350 Financial Management
This course introduces techniques and concepts necessary to manage the financial resources of any organization and achieve the goals of its strategic plan. Topics include time value of money, stock and bond valuation, risk and return, analysis of financial statements, financial forecasting, capital budgeting, common stock financing and investment banking, long-term debt and preferred stock, lease financing, working capital management, and international financial management. (4 units)

MGT 378 Marketing
Marketing techniques are used to interpret the needs of society and to develop new products, pricing, packaging, promotion, and distribution to satisfy human needs. Topics include market segmentation, research, and strategy, as well as advertising, consumer behavior, and new product development. (4 units)

MGT 400 Topics in Business
This course covers topics to be defined by the instructor that supplement the regular curriculum. (variable units) Prerequisite: consent of the department faculty

MGT 402 Global Environmental Management
This course analyzes the causes of and policy options to manage global environmental problems. Lessons concerning environmental management are derived by studying the effectiveness and limitations of environmental and resource policies currently being used throughout the world. (4 units)
MGT 414 Taxation
State and federal taxation are instruments of social policy. The principles of taxation must be considered in the planning and decision-making process of every organization whether profit or nonprofit. This course surveys basic tax concepts and their use in individual and organizational tax planning. Topics include social policy implications of taxation, concepts of income, tax reporting, taxpaying entities, deductions, property transactions, and gain or loss recognition. (2–4 units)

MGT 417 Mathematics for Business
This course teaches the college algebra needed for M.B.A. studies, including linear, quadratic, exponential, and power functions. It emphasizes business examples and applications. Students develop the ability to use mathematical modeling to express phenomena in a graph or equation. (4 units)

MGT 421 Principles of Business Success
This course provides a holistic overview of business. Knowledge is the basis of action, action is the basis of achievement, and achievement is the basis of fulfillment. The full range of knowledge includes the specific principles of various disciplines and the holistic knowledge of the Unified Field of Natural Law, which is the essence of all disciplines. Principles of marketing, finance, operations, accounting, and human resources are taught from the perspective of an integrating business strategy and the beginning of a comprehensive business plan project. Students articulate personal and business goals, and their business concept, vision, and mission. Points are illustrated by lively examples from videos, case studies, guest speakers, and field trips. (4 units)

MGT 422 Business Economics
Business economics focuses on the principles governing the dynamics of markets and industries as well as those governing the behavior of the broader national and global economic environment. It examines principles of economic decision-making, and optimal use of economic resources. The most precious resource of every nation is its people, every one of whom has infinite creativity inherent within. Topics include the dynamics of market supply and demand, industry structure and competition, the economics of business strategy, money and interest rates, and the international economy and exchange rates. Students apply the principles to case studies and complete an industry analysis for the business plan. (4 units)

MGT 423 Business Communication Skills
Effective communicators are skilled both at informing and inspiring other people. This course provides instruction and practice in making oral and written presentations based on the principle that ideal communication is a frictionless flow that nourishes both sender and receiver. Topics include word processing and presentation software; library and Internet research skills; oral presentations; writing letters, reports, proposals, and manuals; and the principles of ideal communication. (4 units)

MGT 424 Data Analysis for Managers
The tools of managerial data analysis enable managers to transform raw data into useful knowledge of business performance in every functional area of business by identifying meaningful patterns and relationships in business data. Increased knowledge of business processes provides a foundation for improved business decision-making and enhanced business performance. Topics include: principles of statistical thinking for management; numerical and graphical tools for describing and analyzing business data; applications of probability and probability distributions; hypothesis testing for business decision-making; tools for analyzing and improving business performance, including statistical quality control; applied business forecasting; regression analysis and correlation; case studies and applications, with an emphasis on business-process improvement. (2–4 units)

MGT 425 Marketing Management
Marketing is the process of creating exchanges that satisfy individual and organizational objectives. Topics include consumer behavior, market research, market segmentation, competitive positioning and strategy, advertising, pricing, distribution and channel management, selling techniques and sales force management, and new product development. Students conduct an industry analysis and write the marketing section for their business plan. (4 units)

MGT 426 Accounting for Decision-Making
Through its conceptual framework, accounting provides organizational feedback loops for planning, implementation, and control. Continued organizational success depends upon the clarity of awareness of both the accountant and the decision maker. Topics include the conceptual framework of accounting; interpretation and analysis of financial statements; cash flow statement; budgeting and financial control; cost-volume-profit analysis; standard costing and variance analysis; responsibility accounting; and the behavioral implications of management accounting systems. Students create a master budget and a sequenced break-even analysis for their business plan. (4 units)

MGT 427 Operations Management
Operations management is concerned with the process of transforming inputs into higher-value outputs with maximum effi-
ciency. Topics include process design; quality management and control; lean production; supplier certification; capacity planning, facilities, and scheduling; and inventory management including materials requirements planning. Students research facility and personnel requirements, along with production and delivery plans including milestone dates for their business plan. (4 units)

MGT 428 Business Law and Ethics

Law is a tool of progress. Law establishes the body that is the business and enables business people to communicate frictionlessly, to manage the relationships between all participants, and to avert any problems before they occur. A business is then able to maintain progress for itself and for society. Topics include contracts, torts, and agency law; property, including intellectual property; employment issues; and global business law. Students determine and complete the form of business organization, necessary employment agreements, necessary property agreements, and a financing plan for their business plan. (4 units)

MGT 429 Human Resource Management

People are an organization’s most important asset. Success comes from organizing and managing people to produce the products and services that customers value. This survey course exposes students to the full array of human resource functions: human resource planning, recruitment and selection, training, performance management, compensation, unions, and upholding employer/employee rights and responsibilities. The students become familiar with the role of human resource department staff in designing human resource systems, as well as the critical role line managers and supervisors play in using these systems effectively to attract, retain, and motivate employees. Students also design a comprehensive human resource section for their business plan. (4 units)

MGT 430 Financial Management

Financial management provides an intelligent direction to the flow of funds for maximizing firm value. This course introduces techniques and concepts necessary to effectively manage the financial resources of any organization in order to achieve strategic goals. Topics include the time value of money, stock and bond valuation, risk and return, capital investment decisions, analysis of financial statements, financial forecasting, working capital management, the investment banking process, and the sources of funding for a business. Students develop capital requirements, plan the raising of capital, and develop a cash flow plan for their business plan. (4 units)

MGT 431 Entrepreneurship

Principles of management, marketing, finance, operations, and accounting are taught from the perspective of starting a new business with an integrated business strategy. Students articulate their personal and business goals and produce an initial business plan. (4 units)

MGT 432 Entrepreneurship Project

This capstone course enables entrepreneurs or intrapreneurs to dynamically integrate the knowledge of the Entrepreneurship module in the creation of their business plan to manifest their intention. Students evaluate sample business plans, review and give feedback on classmates’ business plans, and revise and present their own business plan to faculty and mentors. (4 units)

MGT 440 Intermediate Accounting I

MGT 441 Intermediate Accounting II

MGT 442 Intermediate Accounting III

This course sequence provides a technical analysis of how generally accepted accounting principles (GAAP) are applied in the presentation of published financial statements. The interplay of government, the accounting profession, and the conceptual framework of accounting at the basis of formulating GAAP demonstrates how collective consciousness interacts within itself to create steps of social evolution. References are made to technical statements and pronouncements that are the sources of GAAP, covering a variety of specific topics such as accounting for leases, pensions, and inter-period income tax. (4 units) Prerequisite: for MGT 440—MGT 426; for MGT 441—MGT 440; for MGT 442—MGT 441

MGT 445 Auditing I

MGT 446 Auditing II

This course sequence focuses on the legal and ethical responsibilities associated with the auditor’s report and the technical aspects of auditing a firm’s financial statements. By ensuring the reliability and fairness of published financial statements, the audit function plays a necessary role of vigilance for better-informed investment and credit decisions and, thus, a healthier economic system. Related topics include statistical sampling methods, auditing internal control systems and computerized accounting systems, and working papers and evidence preparation. (2–4 units) Prerequisite: for MGT 445—MGT 442; for MGT 446—MGT 445

MGT 449 Accounting Applications

Modern financial management utilizes computerized accounting packages for efficient record keeping, safeguarding of assets, customer service, and financial analysis. This course reviews
current computerized accounting packages and applies them to case situations. (2–4 units) Prerequisite: MGT 426

MGT 459 International Finance
This course provides an introduction to the theory and practice of financial management in an international context. Topics include the international monetary system, the foreign exchange market, forecasting foreign exchange rates, management of foreign exchange exposure, international investment, and political risk management. (4 units)

MGT 469 International Business
This course explores the issues of marketing, finance, and management as they exist in the international business environment from both a multinational corporate perspective and a single businessperson orientation. Differences between business practice in the U.S. and abroad are explored where those differences affect business objectives. Cultural, economic, governmental, and demographic issues are studied in a case- and lecture-oriented class setting. (4 units) Prerequisite: MGT 426

MGT 470 Advanced Accounting
The emphasis of this course is on the mechanics of consolidations required for many major corporations, and on a variety of special situations in financial accounting. The course illustrates how technical accounting requirements differ for diversified corporations just as the laws of nature are different in different geographic and climatic environments. Specific topics include consolidations, accounting of foreign transactions, branches, segments, partnerships, and governmental units. (4 units) Prerequisite: MGT 426

MGT 473 Cost Accounting I
MGT 477 Cost Accounting II
This course sequence deepens both understanding and application of topics covered in MGT 426 except that more emphasis is placed on controlling costs in a manufacturing environment. Specific topics include standard costing, variance analysis, budgeting, overhead application, and the motivational aspects of using data to evaluate performance. (2–4 units)

MGT 474 Marketing Research
Market research is the first activity that should be conducted when contemplating a new business or governmental activity. It is the means for refining an initial idea to a concept that is maximally supportable by the environment. The course covers specification of information needs, research design methods, sources of marketing information, analyzing and interpreting data, and developing evaluation and feedback systems. (4 units)

MGT 475 Global Strategic Management
This course integrates the knowledge gained in the management major through a wide range of case studies, current readings, and strategic projects. Students practice strategic analysis and develop recommendations for the future success of an organization. Topics include strategic management models; strategic audits, evaluation, and control; social responsibility; external and internal environments; and strategy formulation and implementation. (4 units) Prerequisites: MGT 432, MGT 430, and MGT 425

MGT 476 Accounting for Governmental and Nonprofit Entities
The objective of this course is to learn accounting theory and practice as applied to “nonbusiness organizations” with emphasis on fund accounting. Nonbusiness organizations is a collective term that refers to governmental units as well as all other nonprofit organizations such as schools, colleges, universities, hospitals, and voluntary health and welfare organizations. Areas covered include the legal environment; budgets for revenue, expenditures, and encumbrances; and management of resources, funds, and groups of accounts. (4 units) Prerequisite: MGT 426

MGT 479 International Marketing
This course examines the development of international marketing programs, from the determination of objectives and evaluation of international market opportunities through the coordination of strategies in world markets. It emphasizes the application of basic marketing principles in the multinational environment, the extent of standardization of marketing programs across several countries, and the selection of appropriate entry strategies for foreign markets. (4 units) Prerequisite: MGT 378 or MGT 478

MGT 482 Management and Organization
An understanding of the principles of human behavior at the individual, interpersonal, group, and organizational levels of analysis is critical to successful planning, organizing, and implementation by any manager. This course explores the dynamics of individual and group achievement from the perspectives of both skills and theory. Topics include general management theory, leadership, delegation and coordination, planning and problem-solving, organizational structure, and organizational change. (4 units)

MGT 496 CPA/CMA Review
This course is a review of the material covered on the Certified Public Accountants and Certified Management Accountants
examinations. It prepares students to take either examination through a series of practice exams. Specific topics to be reviewed are cost accounting, advanced accounting, auditing, practice, and theory. (variable units—may be repeated) Prerequisite: consent of the instructor

MGT 497 Fieldwork in Management
This course provides students with the opportunity to relate theoretical management principles to practical issues through contact with individuals and organizations outside of the university setting. With the supervision of the faculty, students develop and implement projects. Projects may include lecturing, consulting, writing, and developing courses or programs to be presented to selected audiences. (variable units) Prerequisites: consent of the School and written authorization for Curricular Practical Training.

MGT 498 Curricular Practical Training (CPT) Internship in Management
This course offers practical experience through work in business administration, public administration, or educational administration. Students maintain journals that record their growth in understanding and experience, as well as their impact on the organization. (4 units) Prerequisites: consent of academic advisor and written authorization of international student advisor.

MGT 499 Directed Study
(variable units) Prerequisite: consent of the School faculty

Graduate Courses

MGT 500 Models of Organizational Excellence
Organizational excellence means integrated, balanced success in all the specific areas of business. This course presents a variety of frameworks for understanding organizational excellence: students become familiar with contemporary models and with the vision of perfection presented by Maharishi Master Management. Topics include origins of the organizational excellence movement, current models of excellence, stakeholder perceptions of excellence, stage models of organizations, principles and practices of visionary organizations, and perfection through Maharishi Vedic Management. (4 units)

MGT 501 Leading Organizational Change
Leadership means accomplishing through others. Implementing successful change in organizations requires process skills in facilitating the performance of individuals and teams. The development of coherence in the collective consciousness of the organization provides for frictionless flow of communication and implementation. Topics include change management skills; life cycle of the consulting process; motivation for performance improvement; individual, interpersonal and team behavior; negotiating collaborative solutions; organizational learning; and the role of training in strategy implementation. (2–4 units)

MGT 502 Improving Business Processes
This course teaches frameworks of performance improvement, such as the ISO 9000 and Baldrige Quality Award criteria. Enlivening the creativity of everyone in the organization provides the ground for innovation towards ever higher levels of excellence. Topics include customer focus; costs of quality; leadership, human resources, and work systems design for performance improvement; process management; performance measurement and strategic information systems; and sustaining performance improvement. (4 units)

MGT 503 Strategic Management and Corporate Revitalization
The fundamental role of the chief executive is to organize the knowledge and skills of employees, suppliers, and partners to create value for the customer. A manager can create and maintain a coherent organization by enlivening the infinite organizing power of the Unified Field of Natural Law in every employee’s awareness. Topics include multiple stakeholder analysis, the strategic management process, generic competitive strategies, distinctive competence and competitive advantage, and strategy implementation. (4 units)

MGT 505 Principles of Success in Professional Life
This course focuses on the systematic and scientific approach to achieving success in any undertaking. Themes include achieving both material success and spiritual development, bringing personal fulfillment to managers and employees while accomplishing company goals and developing successful leadership and problem-free administration. (2 units)

MGT 507 Assessment and Evaluation
Assessment and evaluation are important skills for science and business. In this class, students will master the fundamental principles of assessment and evaluation and gain experience in administering tests. The class project will feature a practicum where all will contribute to developing a measure of states of consciousness. Topics include: reliability, validity, intellectual tests, abilities tests, vocational tests, personality tests, test administration and ethical standards in testing. (4 units)
MGT 508 Managing Information Technology
In order to benefit from their large expenditures in information technology, companies need to manage both their information and the technology which surrounds it. In this course students gain an integrated framework to help companies maximize the value of their information. (2–4 units)

MGT 509 Performance Improvement Project
Throughout Module II, students undertake a Performance Improvement Project with an actual client. Successful completion of this project demonstrates leadership capability to envision an organization’s ideal performance; assess and understand its current performance; and develop, implement, and evaluate practical improvement plans. Project activities include assessing current performance and documenting work processes, suggesting strategic improvements and implementation plans, and reflecting on implementation progress and client response. Acceptance of a completed report is a requirement for graduation. (12 units or more)

MGT 510 Leadership
The qualities and principles of ideal leadership are identified, examined, and developed through the examples of great leaders. This course provides the opportunity to measure how the dynamic executive in both the public and private sectors can apply management principles. (2–4 units)

MGT 512 Government and Business
This course presents the legal aspects of business organizations and business behavior and the regulatory environment in which business operates. It involves a study of the societal forces behind the law and the role of administrative agencies in the government’s regulation of business. Topics include contracts, sales, agency, business associations, property, securities regulation, antitrust law, environmental law, consumer law, intergovernmental relations and corporate political activity, and employment law. (4 units)

MGT 515 Financial Accounting
This course explores the uses of accounting information and financial statements from the perspective of the users. Topics include the design of manual and computerized accounting systems, generally accepted accounting principles, accounting for inventories, long-term assets, credit transactions, stocks and bonds, consolidations, inflation accounting, cash flow analysis, and the interpretation and analysis of financial statements. (4 units)

MGT 516 Managerial Accounting
Managerial accounting provides analytic tools and techniques to assist in planning, decision-making, and control. Topics include differential accounting, cost-volume-profit analysis, job order and process costing, standard costing and variance analysis, variable and full costing, budgeting and control systems, transfer pricing, responsibility accounting, and the behavioral implications of management systems. (4 units)

MGT 517 Statistics
Powerful techniques based on the underlying orderliness of Nature equip students with the skills to solve a variety of important business and economic problems. Topics include statistical process control, probability, sampling and statistical estimation, hypothesis testing, analysis of variance and regression, and correlation techniques. (4 units)

MGT 518 Operations Management
The purpose of operations management is to produce and distribute goods and services most efficiently. Topics include designing production systems, forecasting, planning and controlling operations, linear programming, inventory management, scheduling and control with materials requirements planning, network analysis and queuing analysis, quality control, and maintenance management. The attainment of total quality through continuous process improvement is emphasized. (3–4 units) Prerequisites: MGT 422 and MGT 424

MGT 519 Microeconomics
This course studies the economic behavior of individual consumers, business firms, industries, and markets, and the principles of efficient allocation of resources. Topics include consumer demand, supply and demand, cost analysis, output and pricing, market structure, industry regulation, public goods and externalities, and topics in applied microeconomics. (4 units)

MGT 520 Macroeconomics
Macroeconomics studies the functioning of the national economy and its interaction with other economies. Topics include supply and demand analysis; employment and the price level; aggregate supply and demand analysis; fiscal and monetary policy; money and banking; Keynesian, monetarist, and supply-side economics; the business cycle and macroeconomic forecasting; economic growth; international trade; the international monetary system; economic development; and comparative systems. (4 units) Prerequisite: MGT 422
MGT 521 Development Economics
This course studies the economic issues of developing nations with special attention on how theories of economic development must consider the specific cultural, economic, and political milieu of individual countries. Special topics include free market versus planned economies, redistribution issues, shadow pricing, and the importance of rural development. (2–4 units) Prerequisite: MGT 422

MGT 522 Human Resources and Economic Development
The focus of this course is on the contribution of human resources to economic development, especially the role of education and health in promoting holistic development. Topics include the relation between education, health, and economic development; human capital theory; manpower planning; issues of food and nutrition policy; education and health policy; and case studies drawn from developing countries in Asia, Latin America, and Africa. (2–4 units) Prerequisite: MGT 422

MGT 523 Quantitative Analysis for Management
This course covers the most practical quantitative tools for business, including multiple regression for marketing research, linear programming for production planning, and decision analysis for strategic planning. Models are typically solved using special computer programs. (4 units) Prerequisite: MGT 314

MGT 530 Entrepreneurship Project
This capstone course enables entrepreneurs or intrapreneurs to dynamically integrate the knowledge of curriculum in Module I in the creation of their business plan to manifest their intention. Students will evaluate sample business plans, review and give feedback on classmates’ business plans, and revise and present their own business plan. (4 units)

MGT 534 Career Development
In this course, graduate students examine in depth the professional possibilities in their chosen field. They conduct occupational and educational research, and locate Internet and networking resources related to their profession of choice, and then design an action plan for achieving their next career target. Students practice techniques to pursue an entrepreneurial initiative or to obtain a job or internship. These techniques include resume writing, portfolio design, networking strategies, and interviewing skills. (2 units)

MGT 535 Needs Analysis and Program Evaluation
Human resource development involves identifying the specific requirements of client organizations and constructing evaluation procedures that accurately document instructional outcomes. Topics include roles in needs analysis; methods of organizational analysis, operational analysis, and job analysis; specifying objectives and outcome measures; and reporting and using evaluation data. Students apply the techniques of this course in performing the front-end analysis for a project with an actual client. (2–4 units)

MGT 536 Training Design
The design of effective training programs involves providing learning opportunities that are consistent with learner needs and organizational objectives. This course develops skills in designing instructional programs and materials, and delivery of training. Students apply the skills and understanding gained in the course in a project with an actual client. (2–4 units)

MGT 537 Practicum in Human Resource Development
In this course students carry out a project for a client, under the supervision of program faculty. The project culminates in the presentation of a practicum paper including documentation of client needs, instructional materials, and measures of results, including client feedback. This practicum generally is a continuation of work with the same project begun in MGT 535 and MGT 536. (2–4 units)

MGT 539 Current Topics in Human Resources
In this course students have an in-depth experience of one specific area of human resource management such as human resource planning, industrial relations, or emerging trends and issues. Practical exercises and projects help the student master the essential concepts and skills. (2–4 units—may be repeated) Prerequisites: MGT 566 and MGT 582

MGT 540 Enterprise Applications
Wide applications are increasingly using the Internet to integrate front- and back-office operations and internal and external supply chains. Enterprise Resource Planning (ERP) systems connect financial, manufacturing, and human resource operations into one system. Supply Chain Management (SCM) systems link their customers’ organizations to the distribution partners, banks, and transportation operations in real time. This course will explore the features of a major enterprise application package and the process of implementing a vendor package for a specific client. (2–4 units)

MGT 541 Management Information Systems
This course examines applications and developments of com-
puter-based management information systems. Case studies of successful and unsuccessful implementations are used. Students analyze business system needs, and practice applying application software to business problems. (4 units)

MGT 543 Electronic Business Project
This capstone course gives students the opportunity to integrate the threads of knowledge about Electronic Commerce in a project with an established or beginning company. (4 units)

MGT 544 Internet and Network Technologies
An understanding of networking systems and protocols, as well as wireline and wireless transmission, is fundamental to conceiving and designing Internet-based business systems. The Open Systems Connectivity model presents a framework for analyzing network layers. Topics include network devices, communications protocols, Internet access alternatives, Virtual Private Networks, network security, and emerging Internet technologies. (2–4 units)

MGT 545 Data Management Systems
Well-designed database systems provide a foundation for efficient and integrated business operations. Electronic Commerce requires Web-based applications to interface with company database systems. Topics include modeling database requirements, relational database design, normalization of database tables, SQL, database administration, database management system software options, and Web-to-database production. (3–4 units)

MGT 546 Computer Programming Applications
This course gives students experience using high-level languages to develop good programming skills essential for proper formulation and implementation of management information systems. Topics include formulation of algorithms, structured programming techniques, top-down design, control structures, data types, modularity, and program implementation. A major programming lab assignment is incorporated into the course. (2–4 units) Prerequisite: MGT 541

MGT 547 Systems Analysis and Design
System developers build technology-based solutions that meet the business goals and information processing requirements of users and managers. This course teaches a life cycle approach to system development that integrates database, software, interface, and networking aspects of computer-based applications. Topics include techniques for process modeling and data analysis, client/server and Web-centric architectures, and project management. (4 units)

MGT 548 Electronic Commerce
The Internet has become the foundation of a new breed of Electronic Business applications and brands. In various industry sectors, innovative startup companies are pioneering new business models using E-business technologies. This course surveys server and hosting options, network and telephony protocols, markup languages, Web development tools, and electronic commerce packages. Examples of major Internet business models are reviewed—including portals, auctions, community, vertical industries, and automation platforms. Topics include marketing, purchasing, payment, legal, international, tax, and ethical aspects of business on the Internet. (4 units)

MGT 549 Topics in Management Information Systems
Topics to be determined by the instructor (2–4 units—may be repeated)

MGT 550 Financial Management
Financial management provides an intelligent direction to the flow of funds for maximizing firm value. This course introduces techniques and concepts necessary to effectively manage the financial resources of any organization in order to achieve strategic goals. Topics include the time value of money, stock and bond valuation, risk and return, capital investment decisions, analysis of financial statements, financial forecasting, working capital management, the investment banking process, and the sources of funding for a business. Students will develop capital requirements, plan the raising of capital, and develop a cash flow design for their business plan project. (4 units)

MGT 551 Corporate Finance
This course covers topics in financial planning and decision-making that prove useful to the financial executive. Topics include valuation of debt and equity; capital budgeting; capital structure decisions; dividend policy; options, warrants, and convertibles; hedging financial risk; mergers and acquisitions. (4 units)

MGT 552 Designing Usable Web Interfaces
An effective Web site is designed to fit the task requirements and available resources of users. Topics include components of site design, and principles for evaluating attractiveness, efficiency, and usability. Students gain hands-on experience building Web pages using current page builder, programming, and graphics tools. (2–4 units)

MGT 555 Human Resource Development
Strategic and integrated human resource development programs can improve the effectiveness and efficiency of individual,
group and organizational performance. Development of individual and collective consciousness provides a fundamental basis for performance improvement. Students learn to diagnose performance needs, to design performance improvement interventions, to link performance interventions to business goals, to develop partnerships with management for implementing HRD programs, and to measure the costs and benefits of HRD programs. (4 units)

MGT 558 Practicum in Business Process Improvement
Students perform a consulting project for an existing company to identify opportunities for business process improvement and to recommend action plans for implementing and sustaining change. This capstone project demonstrates the student’s expertise in process improvement, as well as broad mastery of business knowledge and skills in research, problem solving, and communication. (4 units)

MGT 559 Electronic Payment Systems
Assurance of getting paid for goods and services is fundamental to electronic commerce. This course deals with technology for managing payments across electronic networks, including the banking and electronic funds transfer network. Topics include payment gateways, credit card transactions, digital cash, digital checks, smart cards, electronic wallets, micropayments, online bill presentment, and Secure Electronic Transaction (SET) protocol. (2–4 units)

MGT 560 Money and Capital Markets
This course provides an introduction to the instruments, markets, and institutions of the financial sector of the economy. Some topics included are financial instruments, interest rates and bond prices, the structure of interest rates, flow of funds analysis, commercial banking, nondeposit depository, and insurance financial intermediaries. (2–4 units) Prerequisites: MGT 520 and MGT 550

MGT 561 Compensation and Benefits
This course introduces students to organizational compensation and benefit programs. Topics include addressing external competitiveness (wage surveys, pay policies), internal consistency (work analysis and job evaluation), salary administration (performance evaluation methods, policies and communication), benefits programs (health, life, disability), retirement plans, and benefits administration (e.g., enrollment and communication). (2–4 units)

MGT 562 International Finance
This course provides an introduction to the theory and practice of financial management in an international context. Topics include the international monetary system, the foreign exchange market, forecasting foreign exchange rates, management of foreign exchange exposure, international investment, and political risk management. (2–4 units) Prerequisites: MGT 520 and MGT 550

MGT 563 International Trade and Competitiveness
This course examines the key theories and policies of world trade. Topics covered in this course are: determinants of the direction of trade, the economics and politics of international trade, the effect of trade on the welfare of a trading nation and the world, the effect of trade on income distribution, and recent developments in trade theory and policy. (2–4 units)

MGT 565 Organizational Development
This course studies approaches to developing and maintaining coherent group functioning within organizations, and to implementing planned organization change. Techniques are examined for improving individual and group behavior within organizations on the levels of communication, attitudes, motivation, and decision making; and for coordinating the introduction and implementation of change within an organization. (2–4 units) Prerequisite: MGT 582

MGT 566 Human Resource Management
People are an organization’s most important asset. Success comes from organizing and managing people to produce the products and services that customers value. This survey course exposes students to the full array of human resource functions: human resource planning, recruitment and selection, training, performance management, compensation, unions, and upholding employer/employee rights and responsibilities. The students become familiar with the role of human resource department staff in designing human resource systems, as well as the critical role line managers and supervisors play in using these systems effectively to attract, retain, and motivate employees. Students also design a comprehensive human resource section for their business plan. (2–4 units)

MGT 567 Quality Management
In this course students learn the application of quality control principles to all company endeavors, including satisfying internal and external customers. Topics include methods for analyzing measured deviations of products and services, designing and implementing innovative solutions, and maintaining continuous systematic improvement. (2–4 units) Prerequisite: MGT 582
MGT 568 Investment Management
Investment analysis requires application of analytic techniques and tools and consideration of the needs of the individual investor. Topics covered include equity securities, debt securities, options, and futures. This course involves a study of real estate investment including total equity return analysis, tax aspects, installment sales, exchanging, and the role of the computer in real estate investment analysis. (2–4 units) Prerequisite: MGT 550

MGT 569 International Business
This course explores the issues of marketing, finance, and management as they exist in the international business environment from both a multinational corporate perspective and a single businessperson orientation. Differences between business practice in the U.S. and abroad are explored where those differences affect business objectives. Cultural, economic, governmental, and demographic issues are studied in a case- and lecture-oriented class setting. (4 units) Prerequisite: MGT 520

MGT 571 Sales Management
Sales are the lifeblood of an organization. Learning how to manage sales personnel in terms of compensation, motivation, and training is crucial for business firms and not-for-profit organizations. Students learn the sales process: qualifying prospects, referral systems, cold-calling, time organization, appointment setting, presentation to decision-makers, handling objections, closing, post-sales service and further sales. The course then focuses on strategies of sales management, including assigning territories, compensation schemes, keeping sales personnel motivated and making sales fun. The blissful, expressive quality of Creative Intelligence, which desires to share knowledge with a receptive audience, enlivens sales management for maximum achievement and fulfillment. (4 units) Prerequisite: MGT 425 Marketing Management

MGT 573 Advertising
This course explores the approaches to effective advertising necessary for achieving sales and market share objectives. Topics include review of consumer behavior and buying patterns, differences between individual and corporate buying, defining objectives, expenditure analysis, media selection; and the design, management, and evaluation of advertising programs. (2–4 units) Prerequisite: MGT 578

MGT 574 Marketing Research
Market research is the first activity that should be conducted when contemplating a new business or governmental activity. It is the means for refining an initial idea to a concept that is maximally supportable by the environment. The course covers specification of information needs, research design methods, sources of marketing information, analyzing and interpreting data, and developing evaluation and feedback systems. (4 units) Prerequisites: MGT 517 and MGT 578

MGT 575 Internet Marketing
Successful marketing through the Internet requires selecting the right product/service to be marketed on the Web, creating a Web site that effectively sells the product/service, attracting qualified customers to the Web site, and building long-term customer relationships. Student teams create Internet Marketing strategies and budgets for clients. (2–4 units)

MGT 576 Strategic Marketing
This course focuses on the dynamics of developing a marketing strategy and plan essential for subsequent levels of marketing implementation. Topics include business definition, strategy evaluation, the planning process and plan development, implementation of marketing plans, and comparison of differing approaches to strategic marketing planning. The course makes extensive use of case readings and a computerized strategic marketing simulation. (4 units) Prerequisite: MGT 578

MGT 578 Marketing
Ideally, marketing simultaneously fulfills the needs of the consumer, the firm, and the society. This course examines the nature, qualities, and successful results of marketing along six lines of inquiry: the nature of consumer demand; development of new ideas and products; management of advertising, distribution, and selling; conducting market research; developing pricing strategies; and structuring the marketing organization. (4 units)

MGT 579 International Marketing
This course examines the development of international marketing programs, from the determination of objectives and evaluation of international market opportunities through the coordination of strategies in world markets. It emphasizes the application of basic marketing principles in the multinational environment, the extent of standardization of marketing programs across several countries, and the selection of appropriate entry strategies for foreign markets. (2–4 units) Prerequisite: MGT 578

MGT 580 Implementing Business Process Improvement
This course teaches the technical and managerial skills for implementing process improvement in organizations. Students learn the six sigma project approach to performance improvement with its sequential steps of define, measure, analyze,
improve, and control. Topics include redesigning and simplifying business processes, root cause analysis, statistical process control, and linking process improvements projects to strategic business objectives. (4 units)

MGT 581 Employment Law
This course examines the growing body of employment practices law and its impact on human resource policy and decision-making. Topics include equal employment opportunity and discrimination, occupational safety and health, compensation and benefits, employee protection, and labor relations. Special issues (e.g., adverse impact in employee selection, wrongful discharge, sexual harassment, disabilities) are discussed in the context of statutes, case law, and implications for managers in the work setting. (2 units)

MGT 582 Management and Organization
An understanding of the principles of human behavior at the individual, interpersonal, group, and organizational levels of analysis is critical to successful planning, organizing, and implementation by any manager. This course explores the dynamics of individual and group achievement from the perspectives of both skills and theory. Topics include general management theory, leadership, delegation and coordination, planning and problem-solving, organizational structure, and organizational change. (2–4 units)

MGT 583 Mediation and Negotiation
This course is a survey of negotiation, mediation, and arbitration methods of resolving disputes without litigation. Students gain practical negotiation skills through workshops and case studies. Topics include understanding other parties, building a productive framework for negotiation, defining objectives and strategy, framing proposals, and finding win/win solutions. (2–4 units)

MGT 584 Managing a Consulting Practice
Drawing heavily on the experience of successful human resource development practitioners, this course trains students to manage a training and consulting practice, either as an internal or external consultant. Topics include: the market for human resource development; packaging, pricing, and promotion of services; the life cycle of client-consultant relations; preparing and presenting proposals and contracts; employing associates; financial record keeping; and consultant ethics. (2–4 units)

MGT 589 Staffing
Concepts, methods, and techniques for maximizing the utility of organizational processes focused on attracting and selecting high quality employees are considered. Topics include HR planning, job analysis, recruitment, a variety of selection methods, validation of selection measures, and employee separations. Analysis of staffing from strategic/operational perspectives and its influence on individual and organizational outcomes, such as satisfaction, performance, effectiveness, productivity, and organizational climate. (2 units)

MGT 590 Health and Safety
This course examines workplace health and safety issues from the perspectives of the employee, the employer, and the government. Topics include health and safety related legislation (laws, agency enforcement and penalties for violations), organizational health and safety policies and practices (required and effective elements), and employee demand for safe and healthful workplaces (roles of unions and empowered workers). Societal, organizational and managerial implications are highlighted. Workplace applications of the Maharishi Vedic Approach to Health are considered. (2–4 units)

MGT 593 Topics in SCI and Management
Contacting the source of pure intelligence within the individual is the foundation of ideal management. This course covers a variety of topics in the Science of Creative Intelligence curriculum. (1–4 units—may be repeated)

MGT 594 Strategic Management I
In this research-based course, students write a comprehensive analysis of a firm in the context of its industry, and formulate a strategy for the future. Considerations include the firm’s organizational structure and current financial performance; its market, technological, and socio-political environment; and the future trends and scenarios. (4 units) Prerequisites: MGT 520, MGT 550, and MGT 578.

MGT 595 Strategic Management II
This course focuses on the formulation and implementation of strategy. Using case studies, students refine their skills in strategic analysis and develop their understanding of how to organize human, financial and physical resources to lead a company’s implementation of its strategic vision. (4 units) Prerequisite: MGT 594.

MGT 596 E-Business Strategy
This capstone seminar discusses current readings and case studies of Intranet, B2B, and B2C e-business strategies, focusing on the factors leading to sustainable profitability. Students develop
a business proposal for a specific application of Internet technology to create competitive advantage in an entrepreneurial or intrapreneurial venture. (2–4 units)

MGT 597 Topics in Management
This course covers topics, to be defined by the instructor, that supplement the regular curriculum. (variable units) Prerequisite: consent of the School faculty

MGT 598 Curricular Practical Training (CPT) Internship in Management
During internships students apply the knowledge from their management courses in supervised practical settings. (variable units) Prerequisite: consent in the form of written authorization of international student advisor

MGT 599 Directed Study
(variable units) Prerequisite: consent of the School faculty

MGT 601 Survey of Organizational Behavior
A review of the classic works in the Organizational Behavior (OB) literature. This course examines the main issues and questions addressed by OB since its inception in the late 1930s, including motivation, small group behavior, leadership, power, and organizational culture and change. (3 units)

MGT 602 Individual Development
This course looks at the individual and the development of the individual as both the building block and the limiting factor on any organization’s ultimate level of performance. Topics covered include: individual differences, their conceptualization and measurement; personal values and their sources; theories of motivation; processes of individual perception, cognition and learning; stage models of development (ego, cognitive, moral, leadership, self-actualization); and contemporary stress management research. (3 units)

MGT 603 Leadership
Leaders are called upon to perform a variety of functions in organizations—visionary and entrepreneur, planner and resource allocator, as well as dispute adjudicator and friend. What constitutes leadership? Does it vary by context? By the personality of the leader? Are leaders born or can they be developed? Topics include leadership theory and leadership development, measures of leadership, and evaluation of leadership research. (3 units)

MGT 604 Team Behavior and Development
Modern corporations are now organizing around process-based teams. What is the logic behind the shift away from functional hierarchies toward integrated process-based teams? How does this shift affect the organization’s design and structure, interpersonal dynamics and work processes, leadership and compensation systems? Topics include group and intergroup dynamics, management of groups, team building, and methods for measuring team development and effectiveness. (3 units)

MGT 605 Advanced Seminar in Management
Topics vary according to the instructor’s interests. (3 units—may be repeated)

MGT 630 Linear Regression
Regression equations provide a mathematical model of the influence of many explanatory variables on a single criterion variable. Topics include multiple regression, stepwise regression, polynomial regression, the use of indicator variables, variance decomposition, the modeling of interactive effects, and the use of error diagnostics. (3 units) Prerequisite: MGT 514

MGT 631 Analysis of Variance
Topics covered include single-factor and multifactor analysis of variance (ANOVA), analysis of covariance, random effects and repeated measures of ANOVA, the relationship of ANOVA and regression, calculation of power and effect size, and error diagnostics. Nonparametric techniques include the Chi-square, Kruskal-Wallis, sign, Chochran, Mann-Whitney and Wilcoxon tests, and measures of association including Spearman’s rho, Kendall’s tau, and Kendall’s coefficient of concordance. (3 units) Prerequisite: MGT 517

MGT 632 Multivariate Analysis
Topics covered include multivariate analysis of variance, discriminant analysis, canonical correlation, principal component analysis, factor analysis, multidimensional scaling, cluster analysis, and analysis of covariance structures. (3 units) Prerequisite: MGT 630

MGT 633 Time Series Analysis
Topics covered include identification, estimation, diagnostic checking, and forecasting of univariate time series models using the Box-Jenkins autoregressive integrated moving averages (ARIMA) approach; intervention analysis; transfer function analysis; and an introduction to multivariate time series approaches. (3 units) Prerequisite: MGT 630

MGT 635 Experimental Research Design
This introductory course begins with the logic of causation and
correlation in social science. We review the steps of scientific inquiry: literature review, theory development, operationalization and measurement of variables, data collection and analysis, interpretation and write-up. Experimental and quasi-experimental research designs are treated specifically. Topics include the types of validity, the “control” of extraneous influences by design or by statistical methods, and the relationship between research design and statistical testing. (3 units)

MGT 636 Qualitative Research Design
Qualitative research is often used in research on complex behavioral systems and in the exploration of a new field of study. Using methods such as participant observation, unstructured interviewing, and the examination of documents, a scholar can form theories that may be later tested by quantitative methods or validated on other samples. Particular attention is given in this course to the methodology of grounded theorizing in multiple case studies and problems of data analysis, interpretation, and generalization. (3 units)

MGT 637 Survey Research Design
Organizational researchers use survey methods when they want to test a theory or investigate hypotheses using a large amount of quantitative data from many subjects. Topics include questionnaire design and pre-testing, problems of self-reported data, sampling methods and the treatment of nonresponsive subjects. Topics of data analysis pertinent to survey research design are also covered. (3 units) Prerequisite: MGT 635

MGT 670 Organizational Design
Organizational design begins with an analysis of the technological and informational requirements of a system of workflow. Topics include systems theory and hierarchy; various organizational structures such as the functional, multidivisional, and matrix forms; contingency theories of organizational design; work group design; and the design of cooperative interorganizational structures such as joint ventures, strategic alliances, and sourcing relationships. (3 units)

MGT 671 Theories of Organizational Change
Focusing on the psychological and social aspects of organizational inertia and change, topics include social perception and cognition, organizational decision-making, and organizational learning. Particular attention is given to the question of how/when/why organizational change is smoothly incremental rather than characterized by “punctuated equilibria.” Barriers and enablers of organizational change are discussed throughout the course with applications to organizational inertia, decline, and turnaround. A few case studies help us assess the internal consistency of the theories. (3 units)

MGT 672 Organizational Development
The major implications of the areas covered in organizational design and theories of organizational change have to do with actually implementing these ideas in a practical way in the administrative setting. This course covers topics related to these application issues. Areas covered include history of organizational development, organizational development methods, organizational development outcome research, design of human resources programs, and the management of change in the organization. (3 units)

MGT 673 Organizational Performance and Strategy
This course centers on the fundamental question of strategic management: How do firms attain and sustain supernormal performance? Causes of supernormal performance at the level of the industry, strategic group, corporation, business unit, work group, and individual levels are investigated. A significant theme is the recent “resource-based” theory of strategy and the role of human resources. (3 units)

MGT 674 Maharishi Vedic Management Program I
These courses review the application of the theory of the Maharishi Vedic Science program to the field of management. Topics include the relationship between individual and collective consciousness, the nature of leadership in public and private organizations, and applications of the theory of higher states of consciousness to individual, group, and organizational development. Tests of these theories are reviewed from empirical research on the Maharishi Transcendental Meditation program, and opportunities for further research are explored. (3 units)

MGT 689 Preparation for the Comprehensive Examination
The comprehensive examination assesses the student’s ability to express and apply the knowledge from the courses in the Ph.D. program. Students are registered for this course while preparing for and writing the comprehensive examination. (4 units)

MGT 690 Preparation for the Qualifying Examination
This course provides the time necessary to prepare for the qualifying examination, which demonstrates research competence. It may be in the form of a research proposal, or in another form at the discretion of the program faculty. After successful completion of this examination, students advance to the status of Ph.D. Candidate. (1.5 or 3 units—may be repeated) Prerequisite: completion of all core curriculum and consent of the graduate faculty
MGT 691 Teaching Practicum
Teachers are those who not only have a deep insight into their field, but also have the ability to communicate that knowledge to others for their development. In order to practice and demonstrate teaching competency, each doctoral candidate is required to teach one course, generally after the completion of the qualifying examination. (1.5 or 3 units—may be repeated) Prerequisites: MGT 692 and approval of the Dean of Faculty

MGT 692 Seminar in Writing and Teaching
This course is to prepare doctoral students to be competent teachers and writers in their professions. (3 units)

MGT 698 Research Practicum
Students develop research skills through hands-on experience in research activities such as literature review, instrumentation, data collection, data analysis, and report writing. (4 units)

MGT 699 Directed Study
(variable units) Prerequisite: consent of the School faculty

MGT 700 Dissertation Proposal Preparation
Having gained doctoral candidacy by completing the comprehensive and qualifying examinations, students prepare a proposal for a doctoral dissertation that is acceptable to their major professor and dissertation committee. (1.5 or 3 units—may be repeated) Prerequisites: Ph.D. candidate status and consent of the dissertation advisor

MGT 701 Dissertation Research
Students conduct original research and prepare their dissertations. (0.5–2.5 units—may be repeated) Prerequisites: approved dissertation proposal and permission of the dissertation committee

Government Courses

GOV 201 U.S. Government and Politics
This course studies the nature and functioning of U.S. governmental institutions and the American political process. Topics include the Constitution; the Presidency, Congress, the Supreme Court and the judicial branch; administrative and regulatory agencies; political parties and elections; the process of policy formulation and implementation; special interest groups; the role of public opinion and the media; and the relationship between government and national consciousness. (4 units)

GOV 202 Comparative Government
This course examines the governmental structures and political processes of nations throughout the world. The similarities and differences among and between these systems are analyzed, including similarities between systems in different geographical regions and systems at differing levels of economic development. (4 units)

GOV 280 International Relations and Peace
This course examines contemporary international relations with an emphasis on the search for effective means to reduce and prevent armed conflict, enhance international cooperation, and promote world peace. Student will analyze in-depth case studies and write policy papers on key issues in international relations. (4 units)

GOV 290 Government and Collective Consciousness
From the perspective of the Science of Creative Intelligence and Maharishi Vedic Science, students explore the principles and dynamics of collective consciousness and their relationship to governmental functioning, societal trends, and the quality of life in society. Students examine published evidence verifying the beneficial changes in society produced by the group practice of the Transcendental Meditation and TM-Sidhi programs, with particular reference to the implications of these technologies of consciousness for enhancing governmental achievements and promoting world peace. (Offered jointly with the Department of Maharishi Vedic Science.) (4 units)

GOV 340 International Law and Human Rights
This course is a study of the law among nations, including sources of international law, the authority and jurisdiction of international law, international legal institutions (such as the World Court), and current issues in international law. Among the topics to be discussed are the protection of human rights, global environmental law, protection of endangered species, rights of self-determination, and how international law reflects the development of coherence in global consciousness. (4 units)

GOV 377 Public Policy Analysis and Evaluation
A systematic approach to decision making and policy analysis is presented, including defining issues; formulating and evaluating options; monitoring and evaluating results; refining policies; and communicating policy proposals to decision makers and the public. Formulating policies to bring about quick transitions in the solution and prevention of pressing societal problems is emphasized. (4 units)

GOV 400 Special Topics in Government
Possible topics include international trade and competitiveness, health economics and health policy, public sector management,
comparative government, and international organizations and regimes. (4 units—may be repeated) Prerequisite: consent of the School faculty

GOV 402 Global Environmental Politics and Policy
This course analyzes the politics of global environmental protection with an emphasis on the study of policy options to solve and prevent environmental problems throughout the world. Among the issues to be discussed are genetic engineering of food products, pesticide and other chemical contamination in agriculture, global warming, transboundary shipment of toxic waste, air and water pollution, and deforestation. Students will analyze several in-depth case studies and write policy papers. (4 units) (Offered jointly with the Department of Life Sciences)

GOV 407 Negotiation, Mediation, and Cross-Cultural Communication
This course examines effective approaches to negotiations in the public as well as private sectors, with an emphasis on cross-cultural communications and negotiation. Students develop practical negotiation skills through participation in negotiation and mediation workshops and the analysis of case studies. Topics include understanding the other side, analyzing the structure of negotiations, building a productive framework for negotiation, defining objectives and strategy, framing proposals, and finding “win-win” solutions. (4 units)

GOV 420 Economic Analysis of Environmental Policy
This course applies key principles of environmental economics to the analysis of issues of environmental policy and environmental management. Lessons for environmental policy are derived by studying the effectiveness and limitations of current environmental and resource policies with respect to several key contemporary challenges to the national and international environment. No previous study of economics is required. (4 units) (Offered jointly with the Department of Life Sciences)

GOV 498 Internship in Government
This course gives students practical experience in a branch of national government or in state or local government. Students maintain journals that record their experiences during their internships. Students pay their own transportation costs, if travel is required. (4 units—may be repeated for credit) Prerequisite: consent of the School and the Academic Standards Committee

GOV 499 Directed Study
(variable units) Prerequisite: consent of the School faculty
INTRODUCTION

With the rapid advances in science and technology during the last few decades, computing systems have risen to become the key technology which supports and expands almost every area of life, from education and research to commerce and entertainment. With the recent growth of networking systems and the global Internet system connecting millions of people, and almost every educational, research, and business institution in the world, computing has become the most powerful and pervasive aspect of modern technology and a vital element of success in almost every area of life.

Today we live in an information-based society. Fundamental knowledge of how computers and computing systems work is a vital part of modern life. The universal role of computing and the great power that it brings to all areas of life is based on the ability of computing systems to represent and reason about the knowledge which is at the basis of any area of application.

Computer science is the study of these structures and dynamics of information, and their expression into progress and machines. It creates a new and exciting area which merges aspects of mathematics and electronics to form a new discipline of software and computing systems. This allows one to describe abstract concepts or knowledge from any area of interest, and then create powerful systems which produce concrete results—the flight of a satellite, a computer graphics system for movies, scientific computation, management information systems, or desktop word processing.

With such broad areas of application, a computer scientist must have a strong foundation in both the foundations of knowledge on which these systems are organized, and the principles which are used to create and apply computing to all of these diverse areas of life. Clearly, a computing professional enjoys the ability to work in one of the most exciting and leading areas of technology today and one of the most important areas for the future.

Our computer science programs prepare graduates for success in this field by providing comprehensive knowledge of the discipline and the ability to think clearly and precisely.

Programs Offered

- B.A. or B.S. in Computer Science
- Minor in computer science
- M.S. in Computer Science (and MSCS with emphasis in Information Systems Management), offered in three formats:
 1) a one-year program for students with a bachelor’s degree in computer science. Students in this program meet Monday–Friday, all day, and Saturday mornings. (Note: There is also a two-year option for students with a bachelor’s degree in an area other than computer science.)
 2) a three-year on-campus internship program for students with a bachelor’s degree in computer science. Students in this program enroll in practicum and directed study courses for two years and are placed in curricular practical training work assignments at the University. The third year is full-time course work.
 3) a two-year cooperative program for students with a bachelor’s degree in computer science and at least 2 years of relevant work experience. Students in this program take one year of full-time course work at the University (or through Distance Education) and one year of directed study through a cooperative job placement. (Note: most costs for this program are covered through job placement.)
SPECIAL FEATURES

• Our programs develop outstanding computer professionals. Graduates are well prepared for careers in business, government, education, or research. Students become thoroughly grounded in programming languages, computer architecture, computer systems, and theory of computation. In addition, they gain experience in applied computer science areas such as computer graphics, databases, and networking.

• Our students are enjoying notable professional success in industry and education, including Microsoft, IBM, AT&T Bell Labs, Cisco Systems, First Data Corp., Caterpillar, SITA, Bluestem Systems, Amteva Technologies, Commerce Clearing House, Sterling Software, Marathon Photo, LHS Communications Systems, Software Artisans, and the University of Texas.

• The M.S. in Computer Science (MSCS) with an emphasis in Information Systems Management is a track for students who have been working as IT professionals and are interested not only in advancing their technical capabilities, but also in preparing themselves for management roles. This track includes a core of our current MSCS courses to ensure that students gain a solid background in computer science relevant to IT careers. Students will also elect a set of three management courses to give them a grounding in management theory and practices, which will facilitate their movement into technical management positions and provide them with the ability to communicate naturally and easily with business and management personnel.

• Students develop the essentials for success in the computer science profession—problem-solving ability, logical thinking, creativity, and fine focus of attention.

• Students gain experience with the most advanced operating systems and computer environments, ranging from minicomputer environments based on the UNIX operating system—which allow multiple users and multiple tasks on one computer—to environments based on personal computers and workstations (powerful single-user systems).

• Students both study the unifying theory of programming languages and explore a variety of modern languages and approaches to programming in various classes, including: Java (for systems and networks), C++ (for large scale systems), “C” (for technical and systems programming), “Scheme/LISP” (for expert systems), “Prolog” (for logic-based programming), and “ML” (for research in the functional approach to programming).

• The faculty use an effective teaching approach that creates a learning environment of ease and enjoyment without the stress and strain that commonly accompany a rigorous discipline.

• Students study the basic principles underlying all computer hardware, and examine principles that have given rise to the most recent advances in high-performance and super computing systems, including “parallel,” “distributed,” and “highly concurrent” approaches. Each of these three approaches uses many computers in combination to solve a large computational task.

• Computer Science has several computing laboratories, including many workstations for access to the Internet, departmental CSNet, and campus network. A variety of servers provide support for classes, development, and research activities. Students can also access a wide variety of resources, including scanners, printers, and other campus services including the library.

• High speed campus and Internet access is provided to student housing, all student labs, and several other access places around campus.

• Through field trips and guest lectures by successful computer professionals, students become familiar with the latest developments in computer science and their practical applications in science and industry.

• The electronic computer is limited compared to the computing ability of the 100 billion neurons of the human brain. This vast capability of the brain physiology is directly cultured through the University’s curriculum, so that graduates not only master science, but also grow in the ability to spontaneously operate from the total potential of their own brain physiology and make right decisions without mistakes.

DEPARTMENTAL REQUIREMENTS

Entrance Requirements for the Computer Science Major or Minor

Before entering the computer science major or minor, students must successfully complete the course, Functions and Graphs II (MATH 162).

Graduation Requirements for the Bachelor of Arts Degree in Computer Science

To graduate with a B.A. in Computer Science, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) As part of these requirements, students must complete 68 units of course work as listed below. In addition,
students must have a minimum 2.5 cumulative grade point average in all computer science courses to graduate with this degree.

48 units of required courses:
- CS 201 Computer Programming I
- CS 203 Computer Programming II
- CS 210 Introduction to Computer Organization
- CS 220 Data Structures
- CS 222 Data and File Structures
- CS 335 Software Development
- CS 336 Software Development Laboratory
- CS 350 Programming Languages
- CS 360 Digital Logic and Computer Organization
- MATH 272 Discrete Mathematics
- MATH 281 Calculus I
- MATH 282 Calculus II

plus 12 units of computer science courses 300 or above

plus 8 units of course work in management

Graduation Requirements for the Bachelor of Science Degree in Computer Science

To graduate with a B.S. in Computer Science, students must successfully complete all general requirements for the bachelors degree. (Please refer to “Degree Requirements” in “Academic Policies.”) As part of these requirements, students must complete 88 units of course work as listed below. In addition, students must have a minimum 2.5 cumulative grade point average in all computer science courses.

64 units of required courses:
- CS 201 Computer Programming I
- CS 203 Computer Programming II
- CS 210 Introduction to Computer Organization
- CS 220 Data Structures
- CS 222 Data and File Structures
- CS 335 Software Development
- CS 336 Software Development Laboratory
- CS 350 Programming Languages
- CS 360 Digital Logic and Computer Organization
- MATH 272 Discrete Mathematics
- MATH 281 Calculus I
- MATH 282 Calculus II
- MATH 283 Calculus III
- MATH 286 Linear Algebra I
- MATH 351 Probability

plus 16 units of computer science courses 300 or above

plus 8 units of course work in management

Requirements for the Minor in Computer Science

To graduate with a minor in computer science, students must complete 28 units of course work as follows:

28 units of required courses:
- CS 201 Computer Programming I
- CS 203 Computer Programming II
- CS 210 Introduction to Computer Organization
- CS 220 Data Structures
- CS 222 Data and File Structures
- CS 335 Software Development
- CS 336 Software Development Laboratory

plus 8 units of course work in management

Entrance Requirements for the Master of Science Degree in Computer Science

To be admitted to the M.S. in Computer Science program, students must hold a bachelor’s degree with an undergraduate grade point average of at least 3.0 (“B”) and submit scores from the Graduate Record Examination (GRE). In addition, students must have a background in computer science corresponding to the following courses:

- CS 201 Computer Programming I
- CS 203 Computer Programming II
- CS 210 Introduction to Computer Organization
- CS 220 Data Structures
- CS 222 Data and File Structures
- CS 310 Systems Programming
- CS 335 Software Development
- CS 336 Software Development Laboratory
- CS 350 Programming Languages
- CS 360 Digital Logic and Computer Organization
- CS 362 Computer Architecture
- MATH 272 Discrete Mathematics

Students without this background can take the needed course work at the beginning of the program, thus increasing the length of the program up to one year.

Four additional mathematics courses are also required for admission: Calculus I (MATH 281), Calculus II (MATH 282), Linear Algebra I (MATH 286), and Probability (MATH 351). Students lacking one of these mathematics courses may be accepted with the understanding that this deficiency will be made up in addition to their regular program of study.

This required background in computer science and mathematics may have been acquired through course work at the University or elsewhere, or through equivalent professional work experience.
Graduation Requirements for the Master of Science Degree in Computer Science

To graduate with an M.S. in Computer Science, students must successfully complete all requirements for the master’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) Program requirements are 42 units of computer science courses at the 400 level or above, which must include one of:

- CS 435 Algorithms
- CS 505 Advanced Programming Languages

plus the following:

1) 8 units must be computer science courses at the 500 level.

2) All required courses must be completed with a grade of “B” or higher and no more than 4 units of other course work receiving a grade lower than a “B” may be applied toward graduation.

3) If the master’s thesis option is selected by the student and approved by the faculty, then Master’s Thesis Research (CS 588) with an oral defense may be used to satisfy up to 8 units.

4) If, upon admission to the program, the student lacks one of the required mathematics courses, it can be taken to satisfy 4 of the 12 units of additional computer science course work, if approved by the department.

Entrance Requirements for the Master of Science Degree in Computer Science, Internship Program

Entrance requirements for this program are the same as for the M.S. program listed above. Students who have some deficiencies in these entrance requirements may be provisionally admitted to the program and allowed to make up these deficiencies as part of the directed study program during the first year of the program or in an additional year of full-time study.

Graduation Requirements for the Master of Science Degree in Computer Science, Internship Program

To graduate with an M.S. in Computer Science, Internship Program, students must successfully complete all general requirements for the master’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) Program requirements are 46 units of CS course work as follows:

- 38 units of computer science courses at the 400 level or above, which must include at least one of
 - CS 435 Algorithms
 - CS 505 Advanced Programming Languages

 plus 8 units of practicum course work from the following:
 - CS 575–CS 579

 plus the following:
 - All required courses must be completed with a grade of “B” or higher and no more than 4 units of other course work receiving a grade of “B-” or lower may be applied toward graduation.
 - If the master’s thesis option is selected by the student and approved by the faculty, then Master’s Thesis Research (CS 588) with an oral defense may be used to satisfy up to 8 units.
 - If upon admission to the program the student lacks one of the required mathematics courses, it can be taken to satisfy 4 of the 12 units of additional computer science course work, if approved by the department.
 - 8 units must be computer science courses at the 500 level.

NOTE: The Forest Academy requirement for this program is either FOR 500 or FOR 501 in the first semester plus one two-unit Forest Academy course (FOR 411–499) for each semester enrolled on the standard schedule. In addition, a Residence Course or World Peace Assembly is required in each semester on the non-standard schedule. (This is done during the Forest Academy Block at the beginning of each semester.)

Entrance Requirements for the Master of Science Degree in Computer Science, Cooperative Program

Entrance requirements for this program are the same as for the standard M.S. program listed above. If English is not the student’s first language, a TOEFL score of at least 600 is required.

Program costs are covered by cooperative work assignments.

Graduation Requirements for the Master of Science Degree in Computer Science, Cooperative Program

To graduate with an M.S. in Computer Science—Track III, Cooperative Program, students must successfully complete all requirements for the master’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) Program requirements are 46 units of CS course work as follows:

- 38 units of computer science courses at the 400 level or above, which must include at least one of
 - CS 435 Algorithms
 - CS 505 Advanced Programming Languages

 plus 8 units of practicum course work from the following:
 - CS 575–CS 579

 plus the following:
 - All required courses must be completed with a grade of “B” or higher and no more than 4 units of other course work receiving a grade of “B-” or lower may be applied toward graduation.
 - If the master’s thesis option is selected by the student and approved by the faculty, then Master’s Thesis Research (CS 588) with an oral defense may be used to satisfy up to 8 units.
 - If upon admission to the program the student lacks one of the required mathematics courses, it can be taken to satisfy 4 of the 12 units of additional computer science course work, if approved by the department.
 - 8 units must be computer science courses at the 500 level.

MAHARISHI UNIVERSITY OF MANAGEMENT BULLETIN 2003–2004
NOTE: The Forest Academy requirement for this program is either FOR 500 or FOR 501 in the first semester plus one two-week Forest Academy course (FOR 411–499) for each semester enrolled on the standard schedule. In addition, a Residence Course or World Peace Assembly is required in each semester on the non-standard schedule. (This is done during the Forest Academy Block at the beginning of each semester.)

Entrance Requirements for the MSCS with Emphasis in Information Systems Management

The entrance requirements for the MSCS with emphasis in IS Management are the same as for the regular MSCS degree, except that only two college level mathematics courses are required instead of four.

Graduation Requirements for the MSCS with Emphasis in Information Systems Management

The following core MSCS courses must be taken, and there is no requirement to take one of Computer Algorithms or Advanced Theory of Programming Languages. Three of the management courses listed below may be substituted for three computer science courses. All other graduation requirements for the MSCS with emphasis in IS Management are the same as the other MSCS tracks.

Core courses (students take all of the following courses):
CS 422 Database Management Systems (4 units)
CS 424 Fundamentals of Object-Oriented Programming (2 units)
CS 425 Software Engineering (4 units)
CS 450 Computer Communication Networks (4 units)
CS 465 Operating Systems (4 units)
CS 525 Advanced Software Engineering (2–4 units)
CS 545 Distributed Computing (4 units)

Management courses (students select three courses from the following courses):
MGT 425 Marketing Management (3–4 units)
MGT 426 Accounting for Decision-Making (4 units)
MGT 427 Operations Management (4 units)
MGT 429 Human Resource Management (2–4 units)
MGT 430 Financial Management (4 units)
MGT 431 Entrepreneurship (2–4 units)
MGT 482 Management and Organization (4 units)
MGT 508 Managing Information Technology (2–4 units)
MGT 547 Systems Analysis and Design (4 units)
MGT 548 Electronic Commerce (4 units)

Entrance Requirements for the Certificate in Computer Programming

Before entering these certificate programs students must have completed the following prerequisites: For Computer Programming: Functions II (MATH 162). For Software Development and Computer Science: Certificate in Computer Programming.

Graduation Requirements for the Certificate in Computer Programming

To graduate with a Certificate in Computer Programming, students must successfully complete all general requirements for certificate programs. (Please refer to “Degree Requirements” in “Academic Policies.”) Program requirements are 16 units of course work as follows:
- CS 201 Computer Programming I
- CS 203 Computer Programming II
- CS 220 Data Structures
- CS 222 Data and File Structures

COURSE DESCRIPTIONS

NOTE: 4-unit courses may be offered for 3 units during shorter blocks.

Undergraduate Courses

CS 101 Computer Science: Nature’s Cosmic Computing: Harnessing the Organizing Power of Knowledge
This course investigates the most fundamental knowledge at the basis of all computing and modern computer technology, and how it is connected to principles of the Science of Creative Intelligence and Vedic Science. We will look at the structure of computing itself, of computer science, and of the wide range of computing applications which are primary to all areas of professions and life today. (4 units)

CS 200 Introduction to Computer Science
This course presents an overview of the major applications of computers with emphasis on practical computer programming skills. Laboratory computer programming problems illustrate the wide range of scientific and business applications. Topics include formulation of algorithms, flow charting, numerical methods, simulation, searching and sorting, and an introduction to data structures. (4 units)

CS 201 Computer Programming I
This first upper-division course in computer science presents the basic principles of computer programming, with emphasis on
developing practical programming skills through laboratory assignments. Topics include formulation of algorithms, top-down design, basic control structures, data types, functions, and subroutines. (4 units) Prerequisite: MATH 162

CS 203 Computer Programming II
Students use a substantial laboratory programming project as a vehicle for completing the basic knowledge of programming and developing good programming practices. Topics include structured data types, recursion, pointers, and issues of program design, structure, and correctness. (4 units) Prerequisite: CS 201

CS 220 Data Structures
Students use computer programming laboratory problems to apply the principles of data structure organization in a practical environment and develop advanced programming skills. The organizing power of knowledge is found to be the source of order in computer data structures. Topics include abstract data types, internal representation of data, stacks, queues, linked lists, sparse arrays, hash coding, searching and sorting algorithms, dynamic storage allocation, and computing time of programs. (4 units) Prerequisite: CS 203

CS 222 Data and File Structures
Students continue the study of high-level data organization techniques. Topics include representations and algorithms for trees and graphs; file organization techniques; sequential, direct and indexed files; B-trees; and inverted and multilist files. (4 units) Prerequisite: CS 203

CS 262 Computer Organization and Digital Logic
This course presents the internal structure of a computer, an introduction to assembly language, and the design of digital logic circuits and their use in structuring the various functional components of a computer, such as the memory and central processing unit. Topics include machine organization, machine language, assembly language, logic gates, flip-flops, decoders, multiplexers, registers, combinatorial logic, and sequential circuits. (4 units)

CS 272 Discrete Structures
Discrete mathematics is becoming increasingly important because of its wide applicability in computer science, management science, the natural sciences, and the social sciences. Two key processes in discrete mathematics studied in this course are algorithmic problem solving and recursion. Topics include: logic and sets, graph theory, and difference equations. (Same as MATH 272) (4 units) Prerequisite: MATH 162

CS 299 Teaching Practicum in Computer Science
In this course students gain practical experience in the teaching methods of computer science by serving as full-time teaching assistants in a basic undergraduate course. Assistants conduct laboratory sessions with small groups of students, grade laboratory exams and exercises, and assist students individually. (2 units) Prerequisite: consent of the Department faculty

CS 310 Systems Programming
Students learn the systems programs which link the outer activity of high-level programming languages with the internal activity of the computer hardware. Knowledge of this deeper level of systems programs gives a greater range of possibilities to the programmer. Students learn system software such as compilers, linkers, loaders, and debuggers, and the structure and functions of an operating system including device management, process management, system calls, and memory management. (4 units) Prerequisite: CS 222

CS 335 Software Development

CS 336 Software Development Laboratory
In these courses, students participate in a comprehensive system development project to apply and integrate the concepts of software design and implementation. Topics include methods and tools for large system development including analysis, design, testing, and documentation. As a part of the course, students work in teams to develop a substantial programming project. (4 units each) Prerequisite: CS 222

CS 350 Programming Languages
This course involves substantial programming exercises that give students practical experience with several different programming language paradigms. Topics include syntax and semantics of programming languages; data types and structures; control flow including blocks, subroutines, and recursion; implementation methods for semantic features; and comparison of several programming languages. (4 units) Prerequisite: CS 222

CS 362 Computer Architecture
This course investigates the levels and components of computer hardware as they contribute to the functioning of the computer. Topics include RTL systems and notations, bus structures, arithmetic logic units, execution and control design, micropogram control, input-output interface, hardware-software interactions, and microprocessors. Students study the integration of these system components in a sample uniprocessor system and through case studies of actual machines. (4 units) Prerequisite: CS 360
CS 398 Computer Programming Internship
This course offers practical, professional experience in computer programming. Students apply classroom knowledge to an industrial or University project. During the internship, students submit detailed reports of all their computer programming activities. (2 units) Prerequisite: consent of the Department faculty and the Academic Standards Committee

CS 410 Modeling and Simulation
This course studies models to enable a computer to simulate and predict the behavior of systems. Topics include discrete and continuous models, queuing models, process and event simulations, computer system models, and simulation languages and systems. (4 units) Prerequisites: CS 222 and MATH 351

CS 420 Numerical Analysis
Scientific and engineering computer application requires advanced numerical techniques of manipulating and solving complex systems of equations with great efficiency and minimum error. Topics include numerical solution of linear equations, curve fitting, interpolation and polynomial equations, numerical integration and differentiation, solution of nonlinear equations, and error analysis. (4 units) Prerequisites: CS 222, MATH 283, and MATH 286

CS 422 Database Management Systems
Database management systems organize and retrieve information, allowing the user to access the desired information easily and efficiently. Topics in this course include relational, hierarchical, and network data models; query languages; relational calculus, data normalization, and schemas; file organization techniques; data security and integrity; and study of a specific commercial database management system. (4 units) Prerequisite: CS 222

CS 424 Fundamentals of Object-Oriented Programming
This course presents the fundamental principles of Object-Oriented programming. Students will learn how to write reusable and better-maintained software, and integrate this knowledge with laboratory assignments and projects. Topics include: Fundamental principles and models of object-oriented programming, UML class diagrams, and design principles that promote reusability and maintainability of software. (2 units)

CS 425 Software Engineering
This course introduces the major principles used in the development of software. General principles and methods are identified, and their application is located in various phases and models of software engineering. The focus is on understanding the organizing power inherent in the underlying concepts, principles, and processes, rather than any particular developmental method or model. Topics include: the nature and qualities of software; types and qualities of specifications; objectives of design; verification approaches; production process models; and classification of supporting tools and environments. (4 units) Prerequisite: CS 222

CS 435 Algorithms
This course presents methods for analyzing the efficiency of algorithms as well as a variety of known efficient algorithms. Topics include graph algorithms, combinatorial algorithms, searching and sorting, numerical and arithmetic algorithms, recurrence relations, computing time and space complexity of algorithms, and NP-complete problems. (4 units) Prerequisites: CS 222 and CS 272

CS 440 Compiler Construction
Students learn the successive stages and detailed mechanics by which high-level programming languages are translated into machine language by a compiler. Topics include language and grammar specification, compiler structure, compiler generation tools, lexical analysis, parsing, syntax analysis, semantic analysis, intermediate language, code generation and optimization, storage management and linkages, user interface, and a large programming project implementing part of a compiler. (4 units) Prerequisite: CS 310

CS 450 Computer Communication Networks
Computers are connected with high-speed communication lines in local area or wide area networks, for the purpose of sharing databases and distributing workloads to increase efficiency and improve service. Topics include sampling and information theory, error detecting and correction codes, network architecture, communication protocols and models, protocol analysis, hardware components, logical and physical topology, message routing and switching, flow control, local area networks, and data security. (4 units) Prerequisites: CS 310 and MATH 351

CS 455 Software Technologies
This course will cover the most current emerging methods, principles, and practices in software technologies and systems. The topics will vary, based on current technologies and instructor choices. (4 Units)

CS 460 Scientific Computing
This course presents methods and principles for the application of computing systems to scientific and engineering problems. Areas studied in this course are numerical methods, scientific computation, and applications. Specific topics covered are computational efficiency, accuracy and precision, root finding, Taylor series and function evaluation, interpolation and approximation, finite difference calculus, curve fitting, and numerical inte-
CS 465 Operating Systems
An operating system controls the central resources of the computer system and allocates them to individual users. Course topics include sequential and concurrent processes, mutual exclusion, resource sharing, process cooperation, deadlock, resource allocation, processor scheduling, memory management, segmentation and paging algorithms, timesharing systems, scheduling algorithms, and resource protection. (4 units) Prerequisites: CS 222, MATH 283, and MATH 286

CS 470 Knowledge-Based Systems
The field of artificial intelligence attempts to create computer programs that reflect the values of human intelligence. Course topics include state-space representations, tree and graph searches, predicate calculus and deduction, heuristics, learning and problem solving, natural language processing, expert systems, and programming languages for artificial intelligence. (4 units) Prerequisite: CS 310

CS 475 Computer Graphics
One of the fastest growing areas of computer technology, computer graphics is used extensively to present the vast amount of information resulting from a computing process. This course studies data representation, display devices and graphics hardware, display lists, device independence, two-dimensional and three-dimensional graphics, display of curves and surfaces, hidden line and hidden surface removal, shading and rotation techniques, graphics languages, and introduction to image processing. (4 units) Prerequisite: CS 222

CS 485 Theory of Computation
Formal abstract models of computation study the fundamental limitations and capabilities of computers. This course presents a hierarchy of increasingly sophisticated abstract machines in relation to their increasing ability to recognize more general classes of formal languages. Topics include formal grammar, finite-state machines, equivalence of finite-state machines, right-linear and left-linear grammar, context-free languages, Turing machines, unsolvable problems, and recursive functions. (4 units) Prerequisite: CS 272

CS 499 Directed Study
(Variable units) Prerequisite: consent of the Department faculty

Graduate Courses

CS 501 Advanced Computer Architecture
This course presents the methods, principles, and metrics of computer systems architecture. The interactions of hardware components, system architecture, and software algorithms are the basis for evaluating the performance and characteristics of a range of advanced computing systems. Topics include pipelined and multiprocessor architecture, parallel processing, distributed processing, case studies, and comparisons of existing systems. (4 units) Prerequisite: CS 362

CS 505 Advanced Programming Languages
This course considers advanced topics in programming language design with emphasis on formal methods and abstraction mechanisms. Topics include data and control abstraction, formal specification of syntax and semantics, proofs of program correctness, nondeterministic programming, advanced control structures, and study of specific languages. (4 units) Prerequisite: CS 350

CS 510 Advanced Operating Systems
The course covers advanced topics in operating systems including analytical models and theory. Topics are selected from the following: models for parallel computation, Petri-nets, dataflow diagrams, distributed operating systems, queuing theory, system simulation, performance evaluation, dynamic protection concepts and mechanisms, and fault tolerant systems. (4 units) Prerequisites: CS 465 and MATH 351

CS 515 Advanced Theory of Computation
Formal models for computation and computability are surveyed including an introduction to complexity theory. Topics include partial recursive, recursive, and primitive recursive functions; recursive and recursively enumerable sets; Gödel numberings; degrees of insolvability; the recursion theorem; program schemes; and elementary complexity theory. (4 units) Prerequisite: CS 485

CS 525 Advanced Software Engineering
This course considers advanced issues in software engineering. Course topics vary but are selected from areas that represent advanced practices in modern industry, e.g., software testing, object-oriented methodologies, software requirements. (2–4 units) Prerequisite: CS 425

CS 530 Topics in Database Systems
This course considers advanced issues in database management systems design and implementation. Topics include database transactions, constraint checking, security, integrity, recovery techniques, schemas and views of data, semantic data models,
entity-relationship model, extended relational model, distributed databases, and database machines. (4 units) Prerequisite: CS 222

CS 545 Distributed Computing
This course presents the issues, methods, and techniques for creating multi-computing distributed systems across networked or more tightly coupled interconnect systems. Topics include communication, protocol, and synchronization; performance; and the architecture of server, client/server, multi-tier, and mobile agent distributed object systems. Software issues of portability, extendability, and interoperability are also studied. (4 units) Prerequisite: CS 545 Distributed Computing

CS 550 Topics in Design and Analysis of Algorithms
This course includes a survey of efficient algorithms in various areas, including analysis techniques and theoretical issues. Topics vary and are selected from the following: arithmetic and combinatorial algorithms, searching and sorting, numerical algorithms, probabilistic and parallel algorithms, proofs of correctness and efficiency, lower bounds, and average-case behavior. (4 units) Prerequisite: CS 435

CS 560 Topics in Numerical Methods
Specialized computational techniques of solving practical numerical problems in various areas of science and engineering are considered. Topics vary, including areas such as linear programming, optimization techniques, time series analysis, forecasting, Fourier transforms, finite element methods, solution of differential equations, and simulation. (4 units) Prerequisites: CS 420, MATH 306, and MATH 308

CS 570 Teaching of Computer Science
Students gain practical experience teaching computer science by serving as full-time teaching assistants in one of the basic undergraduate courses. Assistants conduct laboratory sessions with small groups of students, grade laboratory programs and exercises, and assist students individually. (2 units—may be repeated)

CS 575 Curricular Practical Training in Software Development (away from Fairfield)

CS 576 Practicum in Computer Operations (in Fairfield)
In this practicum course, students perform computer-related tasks in a technical professional position. The tasks performed may be in the design and development of new systems or the application of existing systems for specific purposes. Practicum job descriptions are formed by the employer and the student, and require approval in advance by one of the graduate faculty of the Department, in consultation with the practicum supervisor where the student is placed. (This course is primarily for students in the internship or cooperative programs.) (0.5–1 unit per block—may be repeated) Students need written authorization to take this course.

CS 577 Curricular Practical Training in Administrative Applications of Computers (for on-campus interns)

CS 578 Curricular Practical Training in Scientific Applications of Computers
In these practicum courses, students perform computer-related tasks in one of the administrative or academic departments of the University. The tasks performed may be in the design and development of new systems or the application of existing systems for specific purposes, and require approval in advance by one of the graduate faculty of the Department, in consultation with the practicum supervisor in the department where the student is placed. (These courses are primarily for students in the internship or cooperative programs.) (0.5 units each per block—may be repeated) Students need written authorization to take this course.

CS 579 Curricular Practical Training in Teaching of Computer Science
Students gain practical experience teaching computer science by serving as full-time teaching assistants in one of the basic undergraduate courses. Assistants conduct laboratory sessions with small groups of students, grade laboratory programs and exercises, and assist students individually. (This course is primarily for students in the internship or cooperative programs.) (0.5 units per block—may be repeated) Students need written authorization to take this course.

CS 580 Seminar in Current Research Topics
Advanced knowledge and current research issues are presented in a specialized area of computer science. The course includes readings of current journal articles in the field and a substantial independent project by students. (4 units—may be repeated) Prerequisite: consent of instructor

CS 581 Seminar in Professional Computing
This course provides topical knowledge relevant to professional applications of computing. Topics will vary each time it is offered. Possible topics may include: object oriented programming, object oriented analysis and design, client/server models and distributed systems, real-time programming, real-time systems, software quality assurance and measurement, applied AI and expert systems, and database management tools. (1 unit—may be repeated)

CS 585 Integration Project and Comprehensive Examination
This course reviews and integrates knowledge presented in the four graduate core courses: CS 465, CS 485, CS 501, and
CS 505. Students write a substantial paper using the dynamics of the Unified Field of Natural Law as an intellectual framework to integrate the concepts presented in the four core courses. The course ends with a comprehensive examination covering the core courses. (4 units) Prerequisites: CS 465, CS 485, CS 501, and CS 505

CS 586 Cooperative Research Project
Students conduct an extended project related to their cooperative practicum project. Students work with their supervisor and the faculty to add a research component to a main technical aspect of their work, and will present a final written report and oral presentation. (4 units)

CS 588 Directed Research
Students conduct an original research project with the guidance of the computer science faculty. (variable units) Prerequisite: consent of the Department and the Academic Standards Committee

CS 591 Directed Study in Computer Science
CS 592 Directed Study in Computer Applications
CS 593 Directed Study in Mathematics
CS 595 Directed Study in Scientific Applications of Computers

CS 596 Directed Study in the Science of Creative Intelligence
In these courses the student spends six hours per week in the evenings covering material from one of the regular courses, or special material selected by the faculty according to the needs and program of study of the student. In some cases the directed study is supervised by a faculty member outside the Department of Computer Science. However, the selection of material to be covered and the final evaluation are subject to the approval of the graduate faculty. (These courses are for students in the internship program only.) (1–2 units each—may be repeated)

CS 598 Computer Science Internship
This course offers practical, professional experience in computer programming. Students apply classroom knowledge to an industrial or University project. During the internship, students submit detailed reports of all their computer programming activities. (2 units) Prerequisites: consent of the Department and the Academic Standards Committee, and written authorization

CS 599 Directed Study
(4 units) Prerequisite: consent of the Department faculty
The Consciousness-Based approach to education at Maharishi University of Management develops the qualities of great teachers—self-confidence, creativity, intelligence, vitality, efficiency, and kindness. Our teacher education degree programs incorporate all the regional and national standards for teacher education and lead to teaching licensure for the State of Iowa. The Iowa Teaching License allows graduates to begin teaching and quickly gain licensure in any of the other 49 states.

In our program, we introduce cutting-edge knowledge which—along with our emphasis on development of personal qualities of leaders—prepares teachers who are able to kindle the love of knowledge in their students and make groundbreaking advances in educational practice.

Programs Offered

- **B.A. in Elementary Education** (one year of full-time study for single subject specialists and one-and-one-half years of full-time study for K–6 self-contained classroom). A major in elementary education focuses on teaching in the elementary school and developing leadership ability. Students may be prepared as traditional elementary school teachers or as specialists in one subject area. Both programs develop effective teachers as well as prepare students for graduate study related to elementary education. Structured into the programs are systematically guided experiences of observing, analyzing, assisting, and practicing teaching in elementary school classrooms. The elementary education programs are approved by the Bureau of Practitioner Development and Licensure of the Iowa Department of Education. Graduates of these programs may be licensed to teach in public or private schools in Iowa and be eligible for teaching credentials in all 50 states. The subject areas in which elementary specialists may be prepared for initial licensure are: art, language arts, mathematics, science, and speech and theater.

- **B.A. in Secondary Education** (one year of full-time study). This program prepares students for careers as teachers of single subjects in the secondary school. Students who wish to teach at the secondary level must complete a major in the subject they wish to teach as well as a major in secondary education. Teaching tracks are available within the art, English, mathematics, chemistry, and business majors. Teaching tracks require from 40 to 60 semester hours of course work, which may be fewer than the number of hours of course work required for other tracks in the same major. Subjects for which our teacher education program prepares students for initial licensure are: art, English, mathematics, biology, chemistry, physics, business, psychology, and speech and theater. We also offer additional endorsements to licensed teachers in all of the above plus general science. The Secondary Education Program is approved by the Bureau of Practitioner Development and Licensure of the Iowa Department of Education. Graduates of this program may be licensed to teach in public or private schools in Iowa and be eligible for teaching credentials in all 50 states.

- **Minor in educational foundations**, which offers a broad understanding of the psychological, philosophical, and sociological foundations of education. Students learn the principles of modern social science and of Consciousness-Based education which guide the design of educational curricula and classroom instruction. They also have frequent opportunities to view model education programs in regional elementary and secondary school classrooms including the award-winning Maharishi School.

- **M.A.T. in Secondary Education** (one year of full-time study). This program prepares students for careers as teachers of single subjects in the secondary school. Students who wish to teach at the secondary level must have completed a major in the subject they wish to teach. Subjects for which our teacher education program prepares students for initial credentials.
licensure are: art, English, mathematics, biology, chemistry, physics, business, journalism, psychology, and speech and theater. We also offer additional endorsements to licensed teachers in all of the above, plus general science.

- **M.A.T. in Elementary Education** (one year of full-time study for single subject specialists and one-and-a-half years of full-time study for K–6 self-contained classroom). This program prepares students for careers as elementary school teachers or as single subject specialists at the elementary level. In addition to providing the foundational knowledge of teaching and curriculum, it provides knowledge and experience of teaching methods in the elementary subject areas.

- **M.A. in Education with a Specialized Field of Teaching and Curriculum** (art education, business education, journalism education, language arts education, mathematics education, science education, and social studies education; one-and-a-half to two years of full-time study). This program is designed for students who wish to go beyond the minimum requirements for beginning teachers in a select elementary or secondary curricular area (e.g., Language Arts Education). Graduates of this program are prepared to apply for an advanced level of certification through the Iowa Department of Education after completion of this program and five years of successful school teaching. This degree is particularly suited to those who wish to develop curricula in a specific subject area, or who wish to be a lead teacher or department head in that field.

- **Teaching Certificate Program in Elementary Education** (one year of full-time study for single subject specialists and one-and-a-half years of full-time study for K–6 self-contained classroom). This program prepares students who already have a bachelor’s degree and who do not wish to seek a master’s degree for licensure as elementary school teachers or as single subject specialists at the elementary level. In addition to providing the foundational knowledge of teaching and curriculum, it provides knowledge and experience of teaching methods in the elementary subject areas.

- **Teaching Certificate Program in Secondary Education** (one year of full-time study). This program prepares students who have a bachelor’s degree and who do not wish to seek a master’s degree for careers as teachers of single subjects in the secondary school. Students who wish to teach at the secondary level must have completed a major in the subject they wish to teach. Subjects for which our teacher education program prepares students for initial licensure are: art, English, mathematics, biology, chemistry, physics, business, psychology, and speech and theater. We also offer additional endorsements to licensed teachers in all of the above, plus general science.

SPECIAL FEATURES

- **New knowledge:** In the Maharishi University of Management education department, with our Consciousness-Based approach, students gain a holistic understanding of human potential and learn how to teach so that they nourish the whole student. This holistic approach is needed in order to deal with the problems of low academic achievement and antisocial behavior that afflict our schools today. In addition, in each class, students learn how the subject matter relates to education as a whole and how it expresses fundamental principles that are present within all disciplines.

- **Stimulating and supportive classroom environment:** Classes in the education department are taught in an active, seminar-style format that promotes full intellectual engagement. Students get individualized attention from faculty who spend on average 30% more time with students than at other institutions. In accord with the University’s emphasis on holistic development, classes are also structured to be friendly and supportive, so that students grow continuously in health, happiness, creativity, and self-confidence.

- **Excellent field experience program:** The education department has an extensive field experience component that places students in the classroom from their first days in the program. Elementary education students have about 170 hours of classroom experience prior to student teaching, and secondary education students have about 60 hours. Experience is gained both in the area’s excellent public schools and in the University’s award-winning K–12 laboratory school. This highly successful school, which has served as a model for other schools around the world, embodies the principles of the Department’s unique Consciousness-Based approach to education.

- **Technology applications:** Students gain an introduction to technology through its use in all their courses and learn how to incorporate computers in their classroom work including the production of an electronic portfolio.

- **Portfolios:** Students create a hyper media portfolio of their work as part of a performance assessment at the end of the program. The portfolio synthesizes and presents the student’s accomplishments in the program including papers, projects, and exams produced throughout the program, examples of their students’ work, videotaped examples of their teaching, and observational reports others have made of their work. The portfolio can be presented on the Worldwide Web and on CD, and students are able to use their portfolio to present themselves to potential employers.
• **Personal growth:** Teaching is a giving profession, and one can only give what one has. Ralph Waldo Emerson once said of teaching that it “involves at once, immense claims on the time, the thought, on the life of the teacher... and only to think of it implies character and profundeness.” Maharishi University of Management offers an education program that develops students as whole human beings so that every day they have more to give to their students. As a result of this growth, education students at the University not only become better educators, but also better parents, better spouses, better friends.

DEPARTMENTAL REQUIREMENTS

Entrance Requirements for a B.A. in Elementary or Secondary Education

Before entering a major in elementary or secondary education, students must complete a total of 30 units of undergraduate course work. After taking a sequence of foundational courses in education, students are reviewed for acceptance into the specialized methods courses.

The following criteria are considered in evaluating candidates:

- **General Education Requirement:** completed course work in the humanities, math, biological and physical sciences, computer and internet literacy, and the social and behavioral sciences.
- **Demonstration of Competency in Basic Skills:** In compliance with State of Iowa standards for teacher education, candidates are required to pass the C-BASE test of basic reading, writing and math skills. This test will be administered at the University in the spring and the fall.
- **Personal Maturity:** a letter of recommendation and reference from a University faculty member who knows the student well, a personal interview with a member of the faculty of the Department of Education, and positive evaluation of dispositions for teaching during the foundational courses in education. In addition, applicants submit a brief statement of purpose.
- **General Academic Ability:** an official record of previous undergraduate work showing a grade point average of 2.75 or better and, for those intending to teach a single subject, a GPA of 3.0 or better in that subject.
- **Performance in Education Courses:** a GPA of 3.0 or better in education courses taken.
- **Those intending to specialize in a single subject must have completed at least 40 units of a major, which may be a teaching major, in that subject with a GPA of 3.0 or better. A teaching major is a track within an academic major designed to prepare a student to teach that subject in an elementary or secondary school. Teaching majors at the University require 40 to 60 units of course work. Specific information regarding the requirements for a teaching major may be obtained from the office of the education department.

The Department may choose to admit provisionally a student who shows particular promise as a teacher, yet who does not meet all of the above criteria. In this case a plan will be developed with the student by which the deficiency can be monitored and remedied prior to student teaching at which time a student will be fully admitted or asked to withdraw. A teacher education student is expected to maintain a “B” average in all required course work in the department.

Additional Requirements for the B.A. in Secondary Education or Elementary Education Specialist

Students who wish to specialize in a specific subject, either at the elementary or secondary level, must complete a major, which may be a teaching major, in that subject as well as the major in education. A teaching major is a track within an academic major designed to prepare a student to teach that subject in an elementary or secondary school. Teaching majors at the University require 40 to 60 units of course work. Specific information regarding the requirements for a teaching major may be obtained from the office of the education department.

The University’s education program prepares students for initial licensure in the following subjects: art, biology, chemistry, physics, English, mathematics, business, and speech and theater. We also offer additional endorsements to licensed teachers in all of the above subjects plus basic science at the elementary level and general science at the secondary level. Additional endorsements require 15 to 24 units of course work in the area of specialization.

Both the secondary and elementary education programs are approved by the Bureau of Practitioner Preparation and License of the Iowa Department of Education and successful completion of these programs prepares one to gain an Iowa teaching license in one’s chosen field.

NOTE: Students considering a specialization in a single subject should consult the Department early in their undergraduate studies to plan to meet State of Iowa requirements for course work in their teaching area and to reserve a position for student teaching.
Graduation Requirements for the B.A. Degree in Secondary Education

To graduate with a B.A. degree in secondary education, students must complete the general requirements for a bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the major are two semester-long modules (36 units) of course work as follows:

36 units of required courses:
- ED 320 Educational Psychology (4 units)
- ED 332 Classroom Teaching Strategies (4 units)
- ED 323 American Education (2 units)
- ED 324 Human Relations in Education (2 units)
- ED 326 Teaching the Exceptional Child (3 units)
- ED 374–394 The Appropriate Secondary Methods (5 units)
- ED 490 Student Teaching—Secondary School (12 units)*
- ED 495 Preparation of Portfolio (4 units)

*(Some students may be required to complete an additional 4–10 units.)

NOTE: The State of Iowa requires that teacher licensure candidates take a Praxis II test at the end of the program.

Graduation Requirements for the B.A. in Elementary Education

To graduate with a B.A. degree in elementary education, students must complete the general requirements for a bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirement for the major is 36 to 58 units of course work as follows, depending on which option is chosen:

15 units of required courses:
- ED 320 Educational Psychology (4 units)
- ED 332 Classroom Teaching Strategies (4 units)
- ED 323 American Education (2 units)
- ED 324 Human Relations in Education (2 units)
- ED 326 Teaching the Exceptional Child (3 units)

In addition, students choose one of the following options:

Option 1: Elementary School Teacher (43 units)
- ED 308 Hyper Media (2 units)
- ED 333 Literature for Children (2 units)
- ED 372 Teaching Art—Elementary (1 unit)
- ED 369 Teaching Mathematics—Elementary (3 units)
- ED 371 Teaching Reading and Language Arts (4 units)
- ED 370 Teaching Science—Elementary (4 units)
- ED 373 Teaching Music—Elementary (1 unit)
- ED 368 Teaching Social Studies—Elementary (4 units)
- ED 494 Student Teaching—Elementary School (18 units)*
- ED 495 Preparation of Portfolio (4 units)

Option 2: Elementary School Single Subject Specialist (21 units)
- ED 491 Specialized Student Teaching—Elementary School (12 units)*
- ED 495 Preparation of Portfolio (4 units)

plus 5 units of special methods courses: ED 351–367

*(Some students may be required to complete an additional 4–10 units.)

NOTE: Students who wish to specialize in a single subject should consult the Department early in their undergraduate programs to plan to meet State of Iowa requirements for course work in their teaching area and to reserve a position for student teaching. Also, The State of Iowa requires that teacher licensure candidates take a Praxis II test at the end of the program.

Requirements for the Minor in Educational Foundations

To graduate with a minor in educational foundations, students must complete 20 units of course work in education to include the following:
- ED 325 Introduction to Holistic Education (2 units)
- ED 320 Educational Psychology (4 units)
- ED 332 Classroom Teaching Strategies (4 units)
- ED 323 American Education (2 units)
- ED 308 Teaching with Hyper Media (1 unit)
- ED 326 Teaching the Exceptional Child (3 units)

plus 4 units of additional course work in education

Entrance Requirements for All Master of Arts Degrees in Education

Applicants meet with a faculty member for a personal interview, and submit transcripts from undergraduate study, letters of recommendation, three references, a brief statement of purpose, and a personal essay. Applicants are expected to have attained an overall GPA during undergraduate study of at least 2.75. Applicants must obtain a passing score on the C-BASE test of basic skills, administered at the University in the spring and in the fall.

Entrance Requirements for the Master of Arts in Teaching Degree

To be accepted to the Master of Arts in Teaching program, specializing in either elementary or secondary education, students are expected to meet the following criteria:
1) a demonstrated record of academic competency, as indicated by a grade point average of 2.75 on a four point scale in undergraduate study;
2) an in-depth knowledge of one’s chosen field of specialization
(where one is teaching a single field), as indicated by a grade point average for courses in that subject of at least 3.0 on a four point scale;

3) proficiency in basic reading, writing, and mathematical problem-solving skills as indicated by a passing score on the C-BASE test of basic reading, writing and math skills. This entrance test is administered at the University both in the spring and in the fall;

4) a liberal arts background, including course work in the humanities, mathematics, biological and physical sciences, computer and Internet literacy, and social and behavioral sciences;

5) dedication to and ability to profit from advanced study in the field of education as verified through personal and professional recommendations, a written statement of purpose, and references;

6) personal maturity, motivation, and stable judgment necessary to be a successful teacher, as shown by personal and professional recommendations, references, and positive evaluation of dispositions for teaching during the foundational courses in education; and

7) understanding of and commitment to one’s growth as an educator as expressed in the statement of purpose, and a personal interview.

Students are required to maintain a “B” average to remain in good standing in the program.

Graduation Requirements for the Master of Arts in Teaching Degree in Secondary Education

To graduate with an M.A.T. degree in secondary education, students must complete the general requirements for a master’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) Program requirements are completion of 36 units of the following course work:

36 units of required courses:
• ED 507 American Education (2 units)
• ED 520 Educational Psychology (4 units)
• ED 522 Human Relations in Education (2 units)
• ED 526 Teaching the Exceptional Child (3 units)
• ED 548 Classroom Teaching Strategies (4 units)
• ED 630–641 The Appropriate Secondary Methods (5 units)
• ED 569 Student Teaching—Secondary School (12 units)
• ED 595 Preparation of Portfolio (4 units)

NOTE: The State of Iowa requires that teacher licensure candidates take a Praxis II test at the end of the program.

Graduation Requirements for the Master of Arts in Teaching Degree in Elementary Education

To graduate with an M.A.T. degree in elementary education, students must complete the general requirements for a master’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) Students who wish to specialize in a single subject must have completed a teaching major in that subject. Program requirements are completion of 36–58 units of the following course work:

15 units of required courses:
• ED 507 American Education (2 units)
• ED 520 Educational Psychology (4 units)
• ED 522 Human Relations in Education (2 units)
• ED 526 Teaching the Exceptional Child (3 units)
• ED 548 Classroom Teaching Strategies (4 units)

In addition, students choose one of the following options:

Option 1: Elementary School Teacher (43 units)
• ED 527 Literature for Children (2 units)
• ED 554 Methods of Teaching Mathematics—Elementary (3 units)
• ED 560 Methods of Teaching Science—Elementary (4 units)
• ED 567 Hyper Media (2 units)
• ED 571 Methods of Teaching Reading and Language Arts—Elementary (4 units)
• ED 573 Methods of Teaching Social Studies (4 units)
• ED 574 Methods of Teaching Music—Elementary (1 unit)
• ED 568 Student Teaching—Elementary School (18 units)*
• ED 595 Preparation of Portfolio (4 units)

Option 2: Elementary School Single Subject Specialist (21 units)
• ED 595 Preparation of Portfolio (4 units)
• ED 597 Specialized Student Teaching—Elementary School (12 units)*
plus 5 units from ED 601–609 The Appropriate Special Methods
*(Some students may be required to complete an additional 4–9 units.)

NOTE: The State of Iowa requires that teacher licensure candidates take a Praxis II test at the end of the program.
Graduation Requirements for the Master of Arts Degree in a Specialized Field of Teaching and Curriculum

To graduate with an M.A. degree in an elementary or secondary curricular area, students must fulfill the general requirements for a master’s degree (Please refer to “Degree Requirements” in “Academic Policies.”), and all the requirements for the M.A.T. in their specialized field, as well as the following:

4 units of required courses:
• ED 674 Analysis of Teaching Strategies and School Curricula

plus 16 units of course work in the student’s academic field

Teaching Certificate Programs

The Consciousness-Based approach to education at the University develops the qualities of great teachers—self-confidence, creativity, intelligence, vitality, efficiency, and kindness. Our teaching certificate programs incorporate all the regional and national standards for teacher education and lead to teaching licensure for the State of Iowa. The Iowa Teaching License allows graduates to begin teaching and quickly gain licensure in any of the other 49 states and in international schools all over the world.

In our program, we introduce cutting-edge knowledge which—along with our emphasis on development of personal qualities of leaders—prepares teachers who are able to kindle the love of knowledge in their students and make groundbreaking advances in educational practice.

Students who have a bachelor’s degree from an accredited college, with a GPA of at least 2.75, may apply to the teaching certificate program. The course requirements for this program are the same as those for the undergraduate major in education. The certificate program thereby offers an alternative to the master’s degree in teaching for students who already have a master’s degree or who do not wish to seek a master’s degree.

Students in the teaching certificate program must maintain a GPA of 3.0 or higher to remain in the program.

Certificates Offered

• Certificate in Elementary Education, including subject matter specialists (one to one-and-one-half years of full-time study). A certificate in elementary education focuses on teaching in the elementary school and developing leadership ability. Students may be prepared as traditional elementary school teachers or as specialists in one subject area. Both programs develop effective teachers and prepare students for graduate study related to elementary education. Structured into the programs are systemati-

cally guided experiences of observing, analyzing, assisting, and practicing teaching in elementary school classrooms.

The Elementary Education Programs are approved by the Bureau of Practitioner Development and Licensure of the Iowa Department of Education. Graduates of these programs may be licensed to teach in public and private schools in Iowa and be eligible for teaching credentials in all 50 states. The subject areas in which elementary specialists may be prepared for initial licensure are: art, language arts, mathematics, science, and speech and theater. We also offer additional endorsements to licensed teachers in all of the above subjects.

• Certificate in Secondary Education (one year of full-time study). This program prepares students for careers as teachers of single subjects in the secondary school. Students who wish to teach at the secondary level must have completed a major in the subject they wish to teach. Subjects for which our teacher education program prepares students for initial licensure are: art, English, mathematics, biology, chemistry, physics, business, and speech and theater. We also offer additional endorsements to licensed teachers in all of the above, plus general science.

The Secondary Education Program is approved by the Bureau of Practitioner Development and Licensure of the Iowa Department of Education. Graduates of this program may be licensed to teach in public or private schools in Iowa and be eligible for teaching credentials in all 50 states.

Entrance Requirements for the Certificate Programs in Elementary or Secondary Education

Before entering a certificate program in elementary or secondary education, students must have completed a bachelor’s degree program from an accredited college. After taking a sequence of foundational courses in education, students are reviewed for acceptance into the second phase of the program, which begins with specialized methods courses.

The following criteria are considered in evaluating candidates:

• General Education Requirement: completed course work in the humanities, math, biological and physical sciences, computer and Internet literacy, and the social and behavioral sciences.

• Demonstration of Competency in Basic Skills: In compliance with State of Iowa standards for teacher education, candidates are required to pass the C-BASE test of basic reading, writing and math skills. This test will be administered at the University in the spring and the fall.
• Personal Maturity: a letter of recommendation from a college or university faculty member or from a current employer who knows the student well, three references, a written statement of purpose, a personal interview with a member of the faculty of the Department of Education, and a positive evaluation of dispositions for teaching in the foundational courses in the education department.

• General Academic Ability: an official record of previous undergraduate work showing a grade point average of 2.75 or better and, for those intending to teach a single subject, a GPA of 3.0 or better in that subject.

• Performance in Education Courses: a GPA of 3.0 or better in education courses taken.

• Those intending to specialize in a single subject must have completed at least 40 units of a major in that subject with a GPA of 3.0 or better in that subject prior to entry into the program.

The Department may choose to admit provisionally a student who shows particular promise as a teacher, yet who does not meet all of the above criteria. In this case a plan will be developed with the student by which the deficiency can be monitored and remedied prior to student teaching at which time a student will be fully admitted or asked to withdraw. A teacher education student is expected to maintain a “B” average in all required course work in the department.

Additional Requirements for the Certificate in Secondary Education or Elementary Education Specialist

Students who wish to specialize in a specific subject, either at the elementary or secondary level, must complete a major, which may be a teaching major, in that subject. A teaching major is a track within an academic major designed to prepare a student to teach that subject in an elementary or secondary school. Teaching majors at the University require 40 to 60 units of course work. Specific information regarding the requirements for a teaching major may be obtained from the office of the education department.

The University’s education program prepares students for initial licensure in the following subjects: art, biology, chemistry, physics, English, mathematics, business, and speech and theater. We also offer additional endorsements to licensed teachers in all of the above subjects plus basic science at the elementary level and general science at the secondary level. Additional endorsements require 15 to 24 units of course work in the area of specialization.

Requirements for the Certificate in Secondary Education

To complete the certificate program in secondary education, students must complete the general requirements for a certificate program. (Please refer to “Certificate Programs” in “Academic Policies.”) The requirements are two semester-long modules (36 units) of course work as follows: 36 units of required courses:

• ED 320 Educational Psychology (4 units)
• ED 332 Classroom Teaching Strategies (4 units)
• ED 323 American Education (2 units)
• ED 324 Human Relations in Education (2 units)
• ED 326 Teaching the Exceptional Child (3 units)
• ED 374–394 The Appropriate Secondary Methods (5 units)
• ED 490 Student Teaching—Secondary School (12 units)*
• ED 495 Preparation of Portfolio (4 units)

*(Some students may be required to complete an additional 10 units.)

NOTE: The State of Iowa requires that teacher licensure candidates take a Praxis II test at the end of the program.

Requirements for the Certificate in Elementary Education

To complete the certificate program in elementary education, students must complete the general requirements for a certificate program. (Please refer to “Certificate Programs” in “Academic Policies.”) The requirement for the major is 36 to 58 units of course work as follows, depending on which option is chosen: 15 units of required courses:

• ED 320 Educational Psychology (4 units)
• ED 332 Classroom Teaching Strategies (4 units)
• ED 323 American Education (2 units)
• ED 324 Human Relations in Education (2 units)
• ED 326 Teaching the Exceptional Child (3 units)

In addition, students choose one of the following options:

Option 1: Elementary School Teacher (43 units)
• ED 308 Hyper Media (2 units)
• ED 333 Literature for Children (2 units)
• ED 372 Teaching Art—Elementary (1 unit)
• ED 369 Teaching Mathematics—Elementary (3 units)
• ED 371 Teaching Reading and Language Arts—Elementary (4 units)
• ED 370 Teaching Science—Elementary (4 units)
• ED 373 Teaching Music—Elementary (1 unit)
• ED 368 Teaching Social Studies—Elementary (4 units)
• ED 494 Student Teaching—Elementary School (18 units)*
• ED 495 Preparation of Portfolio (4 units)

*Some students may be required to complete an additional 10 units.
Option 2: Elementary School Single Subject Specialist (21 units)

- ED 491 Specialized Student Teaching—Elementary School (12 units)*
- ED 495 Preparation of Portfolio (4 units)

plus 5 units of special methods courses: ED 351–367 *(Some students may be required to complete an additional 4–10 units).

NOTE: The State of Iowa requires that teacher licensure candidates take a Praxis II test at the end of the program.

COURSE DESCRIPTIONS

NOTE: 4-unit courses may be offered for 3 units during shorter blocks.

Undergraduate Courses

ED 119 Teaching for Enlightenment
What can human beings become? What can culture attain? In every age, great thinkers have asked these questions and through their answers have given expression to a vision of what humankind could achieve through education.

This course introduces students to the ideas of these great thinkers and their ideas about education. Leading all thinkers is His Holiness Maharishi Mahesh Yogi, whose Consciousness-Based education fulfills the long-sought goals of education—enlightenment for the individual and invincibility for the nation. Students investigate the leading theories and approaches of education, as well as practical principles of teaching and curriculum design. Working in teams, they design a lesson which is taught to children in our model school on campus, Maharishi School of the Age of Enlightenment. In the process of teaching their lessons, students test their ideas in practice and evaluate their effectiveness based on observed results. Students use the knowledge of modern social science and the Science of Creative Intelligence to gain a comprehensive, integrated view of education. (2 units) (Distribution Area: Social Sciences)

ED 308 Teaching with Hyper Media
Hyper Media is becoming an increasingly common form of instruction. The Worldwide Web and many educational CD-ROMs are examples of Hyper Media. This course explores the theory and practice of creating materials in this multi-sensory, multiple pathway format. Students will produce an interactive Hyper Media project using multimedia authoring software. This project will integrate text, graphics, voice, music, and hyperlinks. (variable units)

ED 310 Consciousness-Based Education
This course examines the fundamental goals, principles, and practices of Consciousness-Based education as developed by His Holiness Maharishi Mahesh Yogi and develops students’ speaking skills on these subjects. Topics include the history of education, educational reform, problems and solutions in contemporary education, scientific research on Maharishi Vedic Science and Technology as applied to education, Dr. Tony Nader’s discovery of Veda in human physiology, and six pillars of Vedic technology for reform of education. (2 units)

ED 315 Learning Strategies
This course focuses on the process of learning. It presents a range of learning strategies that are useful across academic curricula as well as non-academic learning experiences including: reading different types of text, making oral presentations, writing, gaining maximum from lectures, and preparing for and taking examinations. Strategies explored include mapping, creating a learning context, reviewing, and relating all learning processes to oneself. (2 units)

ED 320 Educational Psychology
This course has two parts: the first deals with theories of human development; the second deals with theories of learning. The first part of the course looks at theories of both cognitive and affective development and deals with topics such as factors influencing development, endpoints of development, and the nature of intelligence. The second part of the course focuses both on cognitive and behavioral views of learning. Topics include classical and operant conditioning, social learning, information processing, problem solving, creativity, and constructivism. (4 units)

ED 321 Student Growth and Development
This course is an introduction to student growth and development in cognitive, affective, and psychomotor domains. Topics include the theories of Piaget, Kohlberg, Elkind, and Erikson. (2–4 units)

ED 323 American Education
This course provides an introduction to the structure and functioning of American education today. Topics covered include the history of American education, national, state, and local influences on education, legal parameters of education, school
finance, careers in education, and directions in educational reform. (2 units)

ED 324 Human Relations in Education
This course considers the relationship between the individual and society, and between individual cultures in a pluralistic society. Students study major theories from social psychology, multiethic and multicultural education, and interpersonal communication. (variable units)

ED 325 Introduction to Holistic Education
This course provides an introduction to the Teacher Education Program. It is team-taught and gives an overview of all major areas of the program. The course gives special emphasis to the rationale for holistic educational goals and teaching practices and introduces students to the educational writings of His Holiness Maharishi Mahesh Yogi and other leading educational theorists. It also emphasizes key technology skills, such as PowerPoint and Web design which are used throughout the program. A major out-come of the course is that students create the first statement of their philosophy of education. (2 units)

ED 326 Teaching the Exceptional Child
This course introduces the learning characteristics of gifted and handicapped students, and explores strategies and practices that elementary and secondary school teachers can use for exceptional students in group learning environments. Topics include identifying the exceptional student, assuring due process, creating least restrictive environments, preparing the individual education plan (IEP), and evaluating. (variable units) Prerequisites: ED 320, ED 332

ED 330 Assessment and Evaluation
Students learn the fundamental principles, methods, and purposes of student-centered classroom assessment. In addition, students work in groups and individually to prepare a reliable and valid measure of classroom learning. Topics include: validity, reliability, learning targets, assessment methods, standardized testing, and grading. (4 units) Prerequisite: ED 460

ED 332 Classroom Teaching Strategies
This course introduces students to two essential areas of study in classroom teaching, K–12: general principles of teaching and classroom management. Students prepare and carry out lessons in mini-teaching and real classroom situations. Topics include: principles of teaching, teaching strategies, classroom management, communicating with parents, and professional ethics and responsibilities. (4 units)

ED 333 Literature for Children
Students learn the fundamentals of designing and organizing a comprehensive reading program for children in the classroom. Topics include establishing criteria for selection and interpretation of children’s books, designing warm-up and follow-up activities to reading, and developing children’s appreciation for literature. (variable units)

ED 351 Elementary Art Teaching Methods
ED 353 Elementary Language Arts Teaching Methods
ED 355 Elementary Foreign Language Teaching Methods
ED 357 Elementary Mathematics Teaching Methods
ED 359 Elementary Music Teaching Methods
ED 361 Elementary Science Teaching Methods
ED 363 Elementary Social Studies Teaching Methods
ED 365 Elementary Speech and Theater Teaching Methods
ED 367 Elementary SCI Teaching Methods
Each course presents an overview of elementary school teaching methods and materials, and provides opportunities for designing and teaching units in the subject identified in the course title. Topics include individual teaching behaviors, patterns of teaching behaviors, elementary school learning materials for the subject, tests and measurement in the elementary school subject area, computers in teaching, evaluation of students, reading in the subject area, laboratories, field trips, and teaching students with special needs (the handicapped and the gifted). (variable units) Prerequisites for each: ED 323, ED 320

ED 368 Teaching Social Studies—Elementary
This course presents an introduction to social studies, including the variables which influence society (geography, religion, ethics, social norms, and folkways) and social studies teaching methods and materials. (variable units) Prerequisites: ED 326, ED 332

ED 369 Teaching Mathematics—Elementary
This course introduces teaching methods for arithmetic, computation and basic mathematical concepts. Topics include strategies for teaching mathematics in accordance with the stages of children’s cognitive development and for teaching pre-number and number concepts, place value and numeration, whole numbers, addition, subtraction, multiplication, and division. (variable units) Prerequisites: ED 326, ED 332

ED 370 Teaching Science—Elementary
This course prepares the teacher candidate to foster scientific inquiry and problem solving in elementary school children. Topics include scientific concepts, scientific literacy, and science methods and materials in the elementary school. (variable units) Prerequisites: ED 326, ED 332
ED 371 Teaching Reading and Language Arts
This course is an introduction to methods and materials for teaching reading and language arts in the elementary school classroom. Topics include diagnosis and evaluation of reading skills and comprehension; word attack, vocabulary and comprehension strategies for reading instruction; the reading/writing connection; strategies for developing listening and speaking skills; expository and narrative writing; writing poetry; integrating the language arts throughout the curriculum; analysis of commercial reading education materials; use of technology in teaching reading and language arts; and reading materials and methods for students with special needs. Students will apply what they are learning as they spend part of each day in an elementary reading classroom. (variable units) Prerequisites: ED 326, ED 332

ED 372 Teaching Art—Elementary
In this course, students become familiar with the theory, basic concepts, and techniques used to teach elementary school art. Topics include teaching methods and curriculum for art. Materials fee is $15. (variable units) Prerequisite: ED 332

ED 373 Teaching Music—Elementary
This course presents an introduction to elementary school music methods and materials. Topics include teaching behaviors and strategies for music education, use of contemporary technology in teaching music, evaluation in music education, and adapting music education for students with special needs (the handicapped and the gifted). (1 unit) Prerequisite: ED 332

ED 374 Secondary Art Teaching Methods
ED 376 Secondary Business Teaching Methods
ED 378 Secondary Language Arts Teaching Methods
ED 380 Secondary Foreign Language Teaching Methods
ED 384 Secondary Mathematics Teaching Methods
ED 386 Secondary Music Teaching Methods
ED 387 Secondary Psychology Teaching Methods
ED 388 Secondary Science Teaching Methods
ED 390 Secondary Social Studies Teaching Methods
ED 392 Secondary Speech and Theater Teaching Methods
ED 394 Secondary SCI Teaching Methods
Each course presents an overview of secondary school subject matter teaching methods and materials for the subject matter specialist, and provides opportunities for designing and teaching units in the subject identified in the course title. Topics include individual teaching behavior for the specific subject, patterns of teaching behavior, secondary school learning materials in the subject, tests and measurement in the relevant secondary school subject, computers in teaching, evaluation of students, reading in the content area, laboratories, field trips, and teaching students with special needs (the handicapped and the gifted). (variable units each) Prerequisites for each: ED 320, ED 332

ED 396 Education Practicum
In this practicum, students assist in teaching the Natural Law Seminar on Education in the first-year program. In addition to reviewing the field of education as a whole, teaching assistants gain experience in leading small groups, providing student feedback, and evaluating student assignments and practice teaching. (2 units)

ED 398 Internship in Teaching and Curriculum
This course is an elective for students who wish to have additional practical experience in elementary or secondary education. Faculty help place students in educational institutions with responsibilities appropriate to their preparation. Students assist or co-teach in classrooms, under the supervision of University faculty. Readings, journal writing, other written exercises, and regular performance feedback help guide and inform their practical teaching experiences. (variable units) Prerequisite: consent of the instructor

ED 405 Introduction to Holistic Education
This course provides an introduction to the Teacher Education Program. It is team-taught and gives an overview of all major areas of the program. The course gives special emphasis to the rationale for holistic educational goals and teaching practices and introduces students to the educational writings of His Holiness Maharishi Mahesh Yogi and other leading educational theorists. It also emphasizes key technology skills, such as PowerPoint and Web design which are used throughout the program. A major outcome of the course is that students create the first statement of their philosophy of education. (2 units)

ED 407 American Education
This course provides an introduction to the structure and functioning of American education today. Topics covered include the history of American education, national, state, and local influences on education, legal parameters of education, school finance, careers in education, and directions in educational reform. (2 units)

ED 408 Early Field Experiences in Teaching
Early in the undergraduate teacher education program, each candidate for elementary or secondary school teaching licensure enrolls in this course for a two-week full-time field experience in the elementary or secondary school classroom. Students observe the teacher and participate in teaching as appropriate.
The student writes a final report relating classroom experience to developing the full potential of K–12 students. (2 units—may be repeated)

ED 409 Reading and Adolescent Literature
This course addresses both the nature of the reading process and the range of literature appropriate for secondary level students (grades 7–12). Topics include a review of literacy goals for secondary education, models of reading comprehension, strategies for teaching reading skills, assessment of reading ability, types of adolescent literature, and recommended reading for different ages and interests. (variable units) (Required for all students planning to teach secondary school English.)

ED 410 Teaching SCI for K–6
Students learn methods of teaching the Maharishi Science of Creative Intelligence course to elementary school students. Topics include both the SCI curriculum materials for these levels and the instructional guidelines provided in Maharishi’s Principles of Ideal Teaching. (variable units) Prerequisite: ED 332

ED 411 Maharishi Vedic Science and Technology in Education
This course explores the fundamental ideas of Maharishi Vedic Science and Technology in Consciousness-Based education curricula. Topics include: the self-interacting dynamics of consciousness, Maharishi’s Apaurusheya Bhashya of Rik Veda, the structure and major themes of the Vedic Literature, Maharishi Vedic Psychology and Physiology, and research on Consciousness-Based education programs. (4 units)

ED 450 Human Relations in Education
This course considers the relationship between the individual and society, and between individual cultures in a pluralistic society. Students study major theories from social psychology, multiethnic and multicultural education, and interpersonal communication. (variable units)

ED 451 Teaching the Exceptional Child
This course introduces the learning characteristics of gifted and handicapped students, and explores strategies and practices that elementary and secondary school teachers can use for exceptional students in group learning environments. Topics include identifying the exceptional student, assuring due process, creating least restrictive environments, preparing the individual education plan (IEP), and evaluating. (variable units) Prerequisite: ED 320

ED 460 Curriculum Development
Students study the SCI curriculum for grades K–12 as a model for designing and teaching their own curriculum segments. Topics include long-range goals, specific objectives, learner characteristics, and strategies for assessment and modification of curricula. (4 units) Prerequisite: ED 332

ED 480 Methods of Teaching in Secondary School
This course builds on the general teaching methods course and requires that students investigate the planning, teaching, and assessment strategies that are appropriate to their intended teaching area. Each student spends a good portion of their time observing and assisting in a secondary school classroom. They prepare and teach one or more lessons. Specific topics include national standards, scope and sequence in their subject, clinical interviews of students, main concepts of the discipline, and design of main points and Unified Field Charts. (4 units)

ED 482 Teaching Rhetoric and Debate
Students study principles of debate, the rules of debate, and the five traditional aspects of rhetoric in order to prepare themselves to teach students how to debate. Topics include principles of debate, the form of debate, the rational, emotional, and ethical considerations in preparing for a debate, research strategies, arrangement of arguments, style of presenting arguments, and memory and delivery of arguments. (variable units)

ED 483 Teaching Art—Elementary
In this course, students become familiar with the theory, basic concepts, and techniques used to teach elementary school art. Topics include teaching methods and curriculum for art. Materials fee is $15. (1 unit) Prerequisite: ED 332

ED 484 Teaching Mathematics—Elementary
This course introduces teaching methods for arithmetic, computation, and basic mathematical concepts. Topics include strategies for teaching mathematics in accordance with the stages of children’s cognitive development and for teaching pre-number and number concepts, place value and numeration, whole numbers, addition, subtraction, multiplication, and division. (variable units) Prerequisites: ED 332, ED 451

ED 485 Teaching Reading and Language Arts
This course is an introduction to methods and materials for teaching reading and language arts in the elementary school classroom. Topics include diagnosis and evaluation of reading skills and comprehension; word attack, vocabulary and comprehension strategies for reading instruction; the reading/writing connection; strategies for developing listening and speaking
skills; expository and narrative writing; writing poetry; integrating the language arts throughout the curriculum; analysis of commercial reading education materials; use of technology in teaching reading and language arts; and reading materials and methods for students with special needs. Students will apply what they are learning as they spend part of each day in an elementary reading classroom. (variable units) Prerequisites: ED 332, ED 326

ED 487 Teaching Science—Elementary
This course prepares the teacher candidate to foster scientific inquiry and problem solving in elementary school children. Topics include scientific concepts, scientific literacy, and science methods and materials in the elementary school. (variable units) Prerequisites: ED 332, ED 326

ED 488 Teaching Music—Elementary
This course presents an introduction to elementary school music methods and materials. Topics include teaching behaviors and strategies for music education, use of contemporary technology in teaching music, evaluation in music education, and adapting music education for students with special needs (the handicapped and the gifted). (1 unit) Prerequisite: ED 332

ED 489 Teaching Social Studies—Elementary
This course presents an introduction to social studies, including the variables which influence society (geography, religion, ethics, social norms, and folkways) and social studies teaching methods and materials. (variable units) Prerequisites: ED 332, ED 326

ED 490 Student Teaching—Secondary School
This course develops effective secondary school teaching skills. During this course, students gain daily experience in the secondary school classroom. Students participate in weekly seminars and observe, teach, and receive critiques by supervising and cooperating teachers. (variable units—may be repeated) Prerequisites: completion of 4 units in a specialized area of secondary school teaching methods and consent of the Department.

ED 491 Specialized Student Teaching—Elementary School
This course develops effective teaching skills and curriculum planning for the student’s specific subject matter. During this course, students gain daily experience in the classroom in their specific subject matter for at least two grade levels in the K–6 range. Students participate in a weekly seminar and observe, teach, and receive critiques by supervising and cooperating teachers. (variable units—may be repeated) Prerequisites: completion of 4 units in a specialized area of elementary school teaching methods and consent of the Department of Education

ED 492 Teaching Physical Education—Elementary
This course prepares students to help children enhance their mind-body coordination, fitness, and their athletic, affective, and social skills. Topics include the philosophy of physical education, methods of instruction, and skill development in a variety of sports activities. (1–2 units) Prerequisite: ED 332

ED 493 Teaching Language Arts—Elementary
This course trains future teachers to use the most effective methods and materials to accelerate children’s development in language arts. Topics include stages of language development; integration of literacy, comprehension, literature appreciation, and linguistics in language arts instruction; methods for teaching the language arts; and use of multimedia materials. (variable units) Prerequisites: ED 332, ED 326

ED 494 Student Teaching—Elementary School
This course develops effective teaching skills through daily observation, planning, teaching, and evaluation in the classroom. Course work includes weekly seminars, regular observations, written and oral analyses of teaching, critiques by supervising and cooperating teachers and by the student teacher. (variable units—may be repeated) Prerequisite: consent of the Department

ED 495 Preparation of Portfolio
This course provides students with the time and supervision necessary to prepare a portfolio of their work. (variable units) Prerequisite: ED 490 or ED 494

ED 499 Directed Study
(variable units) Prerequisite: consent of the Department and the Academic Standards Committee

Graduate Courses

ED 507 American Education
This course provides an introduction to the structure and functioning of American education today. Topics covered include the history of American education, national, state, and local influences on education, legal parameters of education, school finance, careers in education, and directions in educational reform. (2 units)
ED 509 Curriculum Development
In this course, students observe and analyze curricula materials for SCI grades K–12 and, on this basis, design sample curricular segments of their own. Students analyze compatibility among long-range goals; specific objectives; learner characteristics; and strategies for teaching, assessment, modification, and marketing, both in existing curricula and in curriculum segments which they design and implement. (4 units) Prerequisite: ED 548

ED 510 Consciousness-Based Education
This course examines the fundamental goals, principles, and practices of Consciousness-Based education as developed by His Holiness Maharishi Mahesh Yogi. It develops students’ abilities in speaking publicly about Consciousness-Based education. Topics include the history of education, educational reform, problems and solutions in contemporary education, scientific research on Maharishi Vedic Science and Technology as applied to education, Dr. Tony Nader’s discovery of Veda in human physiology, six pillars of Vedic technology for reform of education, and documentation of Consciousness-Based education. (2 units)

ED 511 Assessment and Evaluation
Students learn the fundamental principles, methods, and purposes of student-centered classroom assessment. In addition, students work in groups and individually to prepare a reliable and valid measure of classroom learning. Topics include: validity, reliability, learning targets, assessment methods, standardized testing, and grading. (4 units) Prerequisite: ED 509

ED 512 Teaching SCI for K–6
Students learn methods of teaching the Maharishi Science of Creative Intelligence course to elementary school students. Topics include both the SCI curriculum materials for these levels and the instructional guidelines provided in Maharishi’s Principles of Ideal Teaching. (1 unit) Prerequisite: ED 548

ED 513 Maharishi Vedic Science and Technology in Education
The primary focus of this course is the emergence of Maharishi’s Absolute Theory of Education from Maharishi Vedic Science and Technology. Topics include: the self-interacting dynamics of consciousness, Maharishi’s Apaurusheya Bhashya of Rik Veda, the disciplines of Vedic Literature and their application to effective K–12 education, and research on Consciousness-Based education programs. (4 units) Prerequisite: ED 548

ED 515 Learning Strategies
This course focuses on the process of learning. It presents a range of learning strategies that are useful across academic curricula as well as non-academic learning experiences. Strategies explored include mapping, creating a learning context, reviewing, and relating all learning processes to oneself. Principles and practice of these strategies are related to other concepts in the teacher education program—schema, developmental psychology, etc. Students also practice teaching these strategies. (2 units)

ED 520 Educational Psychology
This course studies the implications of theories of human development and learning for education. The first part of the course looks at theories of both cognitive and affective development and deals with topics such as factors influencing development, endpoints of development, and the nature of intelligence. Students will study the work of Piaget, Vygotsky, Erikson, Kohlberg, Gardner, and Maharishi. The second part of the course focuses on both cognitive and behavioral views of learning. Topics include classical and operant conditioning, social learning, information processing, problem solving, creativity, and constructivism. (4 units)

ED 521 Student Growth and Development
Students investigate implications for teaching of research and theory growing out of the work of scholars such as Piaget, Kohlberg, Elkind, and Erikson. Students generate and study the implications of contrasting guidelines for teaching from principles associated with a variety of contemporary topics associated with student development, experience, and achievement. (2–4 units) Prerequisite: ED 520

ED 522 Human Relations in Education
This course considers the relationship of the individual and society and of individual cultures within a pluralistic society. Topics include major theories from social psychology, multiethnic and multicultural education, and interpersonal communications skills. (variable units)

ED 526 Teaching the Exceptional Child
This course investigates the various learning characteristics of gifted and handicapped students and the strategies and practices elementary and secondary school teachers can use to develop the full range of learning abilities of individuals and groups. Topics include identifying the exceptional student, assuring due process, creating least restrictive environments, preparing the individual education plan (IEP), and evaluating. (variable units) Prerequisite: ED 520

ED 527 Literature for Children
Students learn to evaluate children’s books and to develop a comprehensive reading program for the elementary school classroom. Topics include criteria of selection, story-telling,
reading warm-up and follow-up, motivating children to read, and designing a reading program. (variable units)

ED 548 Classroom Teaching Strategies
This course introduces students to two essential areas of study in classroom teaching, K–12: general principles of teaching and classroom management. Students prepare and carry out lessons in mini-teaching and real classroom situations. Topics include: principles of teaching, teaching strategies, classroom management, communicating with parents, and professional ethics and responsibilities. (4 units)

ED 550 Methods of Teaching Language Arts—Elementary
This course trains students to use research-based methods and materials to accelerate children’s development in language arts. Topics include stages of language development, theory of whole language instruction, the reading-writing process, bookmaking, the writing workshop, and the integration of language arts with other disciplines. (variable units) Prerequisites: ED 548, ED 526

ED 554 Methods of Teaching Mathematics—Elementary
This course introduces teaching methods for arithmetic, computation, and basic mathematical concepts. Topics include strategies for teaching mathematics in accordance with the stages of children’s cognitive development and for teaching pre-number and number concepts, place value and numeration, whole numbers, addition, subtraction, multiplication, and division. (variable units) Prerequisites: ED 548, ED 526

ED 555 Advanced Study in Teaching Methods
This course is designed for experienced elementary or secondary school teachers who wish to deepen their knowledge of the teaching methods of their discipline, as well as interdisciplinary teaching methods. Topics of instruction vary according to the student’s subject-area expertise. (4 units—may be repeated) Prerequisite: a teaching certificate or two years’ teaching experience

ED 556 Methods of Teaching in Secondary School
This course builds on the general teaching methods course and requires that students investigate the theory behind teaching in their subject. They also study the planning, teaching, and assessment strategies that are appropriate to their intended teaching area. Each student spends a good portion of their time observing and assisting in a secondary school classroom. They prepare and teach one or more lessons. Specific topics include national standards, scope and sequence in their subject, student knowledge of their subject, main concepts of the discipline, and design of main points and Unified Field Charts. (4 units) Prerequisite: consent of the Department

ED 560 Methods of Teaching Science—Elementary
This course provides the teacher with research-based strategies to develop a scientific approach and scientific problem-solving abilities in elementary school children. Topics include novice and expert science concepts, cognitive development, and science methods and materials in the elementary school. (variable units) Prerequisites: ED 548, ED 526

ED 566 Methods of Teaching Physical Education—Elementary
This course trains students to help children enhance their mind-body coordination, fitness, and their athletic, affective, and social skills. Topics include the philosophy of physical education, methods of instruction, and skill development in a variety of sports activities. (1–2 units) Prerequisite: ED 548

ED 567 Teaching with Hyper Media
Hyper Media is becoming an increasingly common form of instruction. The Worldwide Web and many educational CD-ROMs are examples of Hyper Media. This course explores the theory and practice of creating materials in this multi-sensory, multiple pathway format. Students will produce an interactive Hyper Media project using multimedia authoring software. This project will integrate text, graphics, voice, music, and hyperlinks. (variable units)

ED 568 Student Teaching—Elementary School
In this course, student teachers apply the knowledge they have gained during their course work to the elementary school classroom. Students observe, aid, tutor, and gradually assume the responsibility of a professional teacher. (variable units—may be repeated) Prerequisite: consent of the Department

ED 569 Student Teaching—Secondary School
Through daily observing, course planning, teaching, and course evaluation, students come to assume the full responsibility of the full-time teacher. Critiques by supervising and cooperating teachers and by the student teacher, weekly seminars, regular observations, and written student analyses of their teaching promote comfortable and efficient growth toward effective teaching, educational evaluation, and school leadership. (variable units—may be repeated) Prerequisite: consent of the Department

ED 570 Advanced Seminar in Educational Issues
During this seminar students gather information and data in
order to answer a research question on a basic educational issue. The research question is formulated earlier in their course work. The seminar culminates in the writing of a research paper and the oral presentation of the findings and recommendations to other students, faculty in the Department of Education, and other appropriate faculty. (2–8 units) Prerequisite: consent of the Department

ED 571 Methods of Teaching Reading and Language Arts—Elementary

This course trains students to evaluate the theory and practice of reading and language arts education in the light of contemporary research. Course topics include all topics of ED 485 with an additional emphasis on the findings of CIERA, the National Research Council and the National Reading Panel. (variable units) Prerequisites: ED 548, ED 526

ED 573 Methods of Teaching Social Studies—Elementary

This course trains future teachers to use the most effective methods and materials to accelerate children’s understanding of their social environment. Topics include national goals of social studies education, social values, global and multicultural education, and methods for teaching history and geography. (variable units) Prerequisites: ED 548, ED 526

ED 574 Methods of Teaching Art—Elementary

In this course, students become familiar with the theory, basic concepts, and techniques used to teach elementary school art. Topics include teaching methods and curriculum for art. Materials fee of $15. (variable units) Prerequisite: ED 548

ED 575 Methods of Teaching Music—Elementary

This course explores the approaches to music of Dalcaroze, Orff, and Kodaly, as well as other techniques, giving students familiarity and practical experience in communicating central concepts, such as meter, rhythm, melody, harmony, and timbre. (1 unit) Prerequisite: ED 548

ED 595 Preparation of Portfolio

Students prepare their final portfolio and present their work to fellow students and departmental faculty. (variable units) Prerequisite: ED 568 or ED 569

ED 596 Practicum in Teaching Education

In this practicum graduate students assist in teaching the Natural Law Seminar on Education in the undergraduate program. In addition to reviewing the field of education as a whole, teaching assistants gain experience in leading small groups, providing student feedback, and evaluating student assignments and practice teaching. (2 units)

ED 597 Specialized Student Teaching—Elementary School

Through daily observing, course planning, teaching, and evaluation, students come to assume full-time teaching responsibility for planning and teaching their specialized content area to at least two grade levels within the K–6 range. Students also assist elementary school classroom teachers in planning and implementing similar lessons. Critiques by supervising and cooperating teachers and by the student teacher, weekly seminars, regular observations, and written student analyses of their teaching promote comfortable and efficient growth toward effective teaching, educational evaluation, and curriculum leadership within the student teacher’s specialty. (variable units—may be repeated) Prerequisite: consent of the Department

ED 598 Internship in Teaching

This course is designed as an in-depth experience in a classroom which requires students to apply and consolidate skills they have gained in earlier courses. Readings, journal writing, other written exercises, and regular performance feedback help guide and inform their practical teaching experiences. (variable units) Prerequisite: consent of the instructor

ED 599 Directed Study

(variable units) Prerequisite: consent of the Department and the Academic Standards Committee

ED 601 Teaching Elementary School Art
ED 602 Teaching Elementary School Language Arts
ED 603 Teaching Elementary School Foreign Language
ED 604 Teaching Elementary School Mathematics
ED 605 Teaching Elementary School Music
ED 606 Teaching Elementary School Science
ED 607 Teaching Elementary School Social Studies
ED 608 Teaching Elementary School Speech Communication and Theater
ED 609 Teaching Elementary School Science of Creative Intelligence

These courses present an introduction to elementary school teaching methods and materials for the subject matter specialist and provide opportunities for designing and teaching elementary school units in the identified subject matter. Topics include individual teaching behaviors, patterns of teaching behaviors, elementary school learning materials, tests and measurement in elementary content, computers in teaching specialized content to children, evaluation of children, reading in the content area, laboratories, field trips, and adapting teaching for children with...
ED 630 Teaching Secondary School Art
ED 631 Teaching Secondary School Business
ED 632 Teaching Secondary School Language Arts
ED 633 Teaching Secondary School Foreign Languages
ED 635 Teaching Secondary School Mathematics
ED 636 Teaching Secondary School Music
ED 637 Teaching Secondary School Science
ED 638 Teaching Secondary School Social Studies
ED 639 Teaching Secondary School Speech Communication and Theater
ED 640 Teaching Secondary School Science of Creative Intelligence
ED 641 Teaching Secondary School Psychology

Each course presents a theory and research base for a comprehensive treatment and in-depth analyses of secondary school subject matter teaching strategies and materials, and provides opportunities for designing, teaching, and evaluating units in the subject matter identified in the course title. Teacher behaviors of directing, informing, observing, accepting, questioning, and evaluating students are analyzed and practiced with such teacher- and student-prepared types of instructional materials as manipulative, printed (reading), writing and drawing, filmed, and computer. The student learns to adapt learning materials and teaching strategies in the relevant content area for students with special needs (handicapped and gifted). (variable units each) Prerequisites for each: ED 509 and ED 548

ED 670 Supervised Master Teaching—Elementary School
ED 672 Supervised Master Teaching—Secondary School

This course gives students tools for evaluating teaching methods in their subject of specialization through an extended elementary school teaching laboratory experience. Students work in teams to demonstrate knowledge and skills gained in previous courses, and observe and analyze their own and team members’ teaching strategies and the corresponding achievement of their students. (2–4 units—may be repeated) Prerequisites: ED 569 and consent of the Department

ED 674 Advanced Analysis of Teaching Strategies and School Curricula

In this course students are brought to a refined level of understanding and appreciation for: 1) the unique simplicity, effectiveness, and beauty of their own behavior in implementing school curricula; 2) their ability to perform and analyze teaching strategies and school curricula in terms of profound categories and patterns; and 3) their present status as master teachers relative to their ultimate goal of becoming ideal teachers. Topics include interaction analysis, goal analysis, task analysis, assessment strategies, modification strategies, school curriculum marketing strategies, and scholarly participation in the field of education. (2–4 units—may be repeated for credit) Prerequisites: ED 509 and consent of the Department

ED 680 Seminar on Teaching and Writing

This course is to prepare doctoral candidates to be competent college teachers and writers in their professions. Topics include lecturing skills, making instructional charts, designing learning activities, writing for general and professional readers, and evaluating one’s own and others’ teaching and writing. During the course students design and teach lessons, analyze examples of writing, write a short research paper or article, and understand their field of study in the context of interdisciplinary studies through their teaching and writing. (2–4 units)

ED 690 Topics in Consciousness-Based Education Programs

This course presents knowledge of Maharishi Vedic Science and its application to elementary and secondary curriculum and instruction. Topics include Maharishi Vedic Approach to Health programs, Maharishi’s Principles of Ideal Teaching, Maharishi’s Translation and Commentary on the Bhagavad-Gita, Maharishi’s Vedic Mathematics, and Maharishi Vedic Science and the Science of Creative Intelligence curriculum and instruction for elementary and secondary levels. (1–4 units) Prerequisite: consent of instructor
INTRODUCTION

Electrical engineering has expanded the range of human understanding and interaction with nature from “smaller than the smallest to larger than the largest.” More specifically, we can now experience subatomic particles and fields on one hand, and the very edges of our known universe on the other, effectively looking back in time some 15 billion years or more. It has enabled us to multiply our knowledge and ability to do work by an almost unbounded factor. As the foundation of technology that supports our world, it provides instantaneous global communications. Electronic engineering even influences political decisions: Some experts assert that economics and engineering have become more important world forces than political ideology.

The Bachelor of Science degree in Electronic Engineering prepares students to become leaders in this field. They may pursue a rewarding career as an electronic engineer or in one of the hundreds of professions supported by electronic engineering, or continue their education at the master’s or doctoral levels.

The M.S. degree in Applied Physics with specialization in Wireless Communications specifically targets professionals with either a Physics or an Electronic Engineering background. It provides a very efficient program to enhance both professional knowledge and experience in three aspects of Wireless Communications: 1) Semiconductor Devices and Microwave Integrated Circuits, 2) Microwave Propagation and Antennas, and 3) Digital Communications Systems. During their distance education component, students will also have advanced course work in statistical techniques for analysis and improvement of manufacturing.

With modern laboratory facilities, state-of-the-art computer-aided design software, and innovative curriculum, the Department of Engineering offers the best in both traditional and progressive engineering education. In the senior year, students share several advanced communications systems courses with the M.S. students in Applied Physics. Faculty introduce innovative study and learning aids throughout the curriculum. These include strong attention to writing and communication skills, and the most important aspect of any educational curriculum: development of the student’s full creative potential.

Programs Offered

1) The B.S. in Electronic Engineering gives a firm foundation in the three major branches of electrical engineering and provides professional knowledge and skills for successful graduate study or a fulfilling career in electronic engineering. Students earning the B.S. in Electronic Engineering also earn a B.S. in Physics at the same time, due to the overlap of course work. All students also take several advanced courses in the senior year that are shared with the students in the M.S. in Applied Physics: Wireless Communications Systems.

2) The M.S. in Applied Physics: Devices and Systems for Wireless Communications is a program jointly offered by the Physics and Electrical Engineering Departments. It is designed specifically for professionals working in the Wireless Communications area and allows a variety of financial aid packages for both U.S. and international students. Students will generally study on campus for about nine months and finish their degree by distance education, while working full time in the Wireless Communications industry.

3) The B.A. degree in Electronics and a Minor in Electronics are offered for undergraduates who wish to take a smaller number of engineering courses and still complete their education in four years. Both of these share courses with the physics department and provide a B.A. or Minor in Physics with the same course work.

SPECIAL FEATURES

• Our electronic engineering program is uniquely effective in
developing creativity, the key element of effective engineering design. Students develop high levels of problem-solving skill and great efficiency in action for support of personal and professional success. Our electronic engineering graduates are working in some of the leading electronics industries worldwide, including KLA Instruments, MCI, Litton Microwave, and Siemens Electronics.

- Students gain hands-on experience in the Department’s $2 million modern laboratory facilities, and use Agilent ADS (state-of-the-art microwave CAE software).
- Undergraduate students begin by gaining a holistic understanding of the three basic subdivisions of electrical engineering: 1) electronic devices and materials science, 2) electromagnetic fields, and 3) circuits and systems. Graduate students take the same subjects, but at a much more advanced level and with application to Wireless (Digital) Communication systems.
- Almost daily, students gain hands-on experience with a wide variety of professional software and equipment.
- During senior year, undergraduate students take advanced professional courses in wireless communication systems
- Undergraduate students gain professional engineering design experience by means of an extended individual thesis project that lasts for three full blocks. Projects include: a proposal stage; a design, fabrication, and characterization stage; and a formal analysis, documentation, and presentation stage. This and other engineering courses emphasize oral and written communication skills, along with strong technical skills.
- The Undergraduate Research Opportunity Program (UROP) offers a creative outlet on a merit basis for students who seek academic challenges beyond required course work. Projects include increased faculty input and can include work with an industry mentor.
- The Department of Electrical Engineering offers several extended courses that provide “just-in-time” engineering through tight integration of two or more topics that might otherwise be taught separately.

DEPARTMENTAL REQUIREMENTS

Entrance Requirements for Engineering (and Physics) Majors

In compliance with professional accreditation standards, we require that students be formally accepted into the major. As a prerequisite for taking further courses in either department, Physics and Electronic Engineering, Bachelor of Science majors must formally request admission into the majors. Acceptance will depend on performance in the following three courses: PHYS 210, MATH 281, and MATH 282. The Physics and Engineering faculty may also review other admission materials previously submitted for general admission to the University.

Graduation Requirements for the Bachelor of Science Degree in Electronic Engineering

To graduate with a B.S. in Electronic Engineering, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) These same requirements also qualify students for the B.S. in Physics.

To graduate with a major in Electronic Engineering, students must successfully complete an approved program of at least 114 units chosen from the following courses (each course is 4 units unless otherwise noted):

- MATH 281 Calculus I
- MATH 282 Calculus II
- MATH 283 Calculus III
- MATH 308 Ordinary Differential Equations
- CS 200 Introduction to Programming
- ME 285 Mechanical Design (6 units)
- PHYS 210 Introduction to Classical Mechanics
- PHYS 230 Introduction to Electromagnetism
- PHYS 244 Introduction to Harmonics, Waves, and Optics
- PHYS 250 Introduction to Modern Physics
- PHYS 313 Classical Mechanics I
- PHYS 314 Classical Mechanics II
- PHYS 350 Electricity, Magnetism, and Optics I and II (6 units)
- PHYS 351 Electricity, Magnetism, and Optics II
- PHYS 360 Quantum Mechanics I
- PHYS 361 Quantum Mechanics II
- PHYS 370 Thermodynamics and Statistical Mechanics I
- PHYS 371 Thermodynamics and Statistical Mechanics II
- PHYS 380 Methods of Experimental Physics I
- PHYS 381 Methods of Experimental Physics II
- PHYS 457 Microwave Fields A: Microstrip Integrated Circuits (6 units)
- PHYS 465 Microwave Fields B: Radiation and Antennas (6 units)
- EE 310 Circuit Theory
- EE 318 Electron Devices I & II (6 units)
- EE 330 Analog Integrated Circuits
- EE 335 Digital Integrated Circuits
- EE 420 Semiconductor Technology
- EE 430 Analog Communication Systems
- EE 460 Communications Systems A: Digital Modulation and Coding (6 units)
Graduation Requirements for the Bachelor of Arts Degree in Electronics

To graduate with a B.A. in Electronics, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) These same requirements also qualify students for the B.A. in Physics.

To graduate with such a degree, students must successfully complete an approved program of at least 80 units plus a specialization in some other discipline, chosen by the student. Course requirements for the B.A. should be chosen from the following (each course 4 units unless otherwise noted):

- MATH 281 Calculus I
- MATH 282 Calculus II
- MATH 283 Calculus III
- MATH 308 Ordinary Differential Equations
- CS 200 Introduction to Programming
- PHYS 210 Introduction to Classical Mechanics
- PHYS 230 Introduction to Electromagnetism
- PHYS 244 Introduction to Harmonics, Waves, and Optics
- PHYS 250 Introduction to Modern Physics
- PHYS 313 Classical Mechanics I
- PHYS 314 Classical Mechanics II
- PHYS 350 Electricity, Magnetism, and Optics I (6 units)
- PHYS 351 Electricity, Magnetism, and Optics II
- PHYS 360 Quantum Mechanics I
- PHYS 361 Quantum Mechanics II
- PHYS 370 Thermodynamics and Statistical Mechanics I
- PHYS 371 Thermodynamics and Statistical Mechanics II
- PHYS 380 Methods of Experimental Physics I
- PHYS 381 Methods of Experimental Physics II
- PHYS 390: Research in Physics (6 units)
- EE 310 Circuit Theory
- EE 318 Electron Devices I & II (6 units)
- EE 330 Analog Integrated Circuits
- EE 335 Digital Integrated Circuits
- CS 200 Introduction to Programming
- ME 285 Mechanical Design (4 to 6 units) or ME 310 Statics

Requirements for the Minor in Electronics or Physics

To graduate with a minor in Electronics or Physics, students must successfully complete 38 units of course work as follows. These same requirements also qualify students for the minor in Physics (all courses 4 units):

- MATH 281 Calculus I
- MATH 282 Calculus II
- PHYS 210 Introduction to Classical Mechanics
- PHYS 230 Introduction to Electromagnetism
- PHYS 244 Introduction to Harmonics, Waves, and Optics
- PHYS 250 Introduction to Modern Physics
- PHYS 380 Methods of Experimental Physics I
- EE 310 Circuit Theory
- EE 318 Electron Devices I and II (6 units)
- EE 330 Analog Integrated Circuits
- EE 335 Digital Integrated Circuits
- CS 200 Introduction to Programming
- ME 285 Mechanical Design (4 to 6 units) or ME 310 Statics

Graduation Requirements for Co-op Program for Professionals in Physics and Electronic Engineering: M.S. in Applied Physics: Devices and Systems for Wireless Communications

To graduate with an M.S. degree in Applied Physics, students must successfully complete all general requirements for the Master’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the major are at least 42 units of course work from the following list, as approved by the Department. At least 26 units from the following:

- PHYS 525: Semiconductor Physics and Devices (4 units)
- PHYS 527: Microwave Fields A: Microstrip Integrated Circuits (4 units)
- PHYS 540: Semiconductor Physics and Integrated Circuits (4 units)
- PHYS 545: Microwave Fields B: Radiation and Antennas (4 units)
- PHYS 530: Communications Systems A: Digital Modulation and Coding (4 units)
- PHYS-EE 505: Review of Communications Systems (2 units)
- PHYS-EE 510: Professional Effectiveness (1 to 4 units)

plus 16 units of distance education courses as follows:

- APMA 530: Statistics I: Statistical Process Analysis (4 units, 4 months)
• APMA 560: Statistics II: Experimental Methods for Process Improvement (4 units, 4 months)
• PHYS-EE 580: Practicum (8 units)

Program Description and Entrance Requirements for M.S. in Applied Physics: Devices and Systems for Wireless Communications
Please see our web page: www.mum.edu/wireless

COURSE DESCRIPTIONS

NOTE: 4-unit courses may be offered for 3 units during shorter blocks.

Electronic Engineering Courses

EE 210 Circuit Theory—B.A.
(4 units) Prerequisite: PHYS 230
EE 215 Electron Devices I—B.A.
(4 units) Prerequisite: EE 210
EE 216 Electron Devices II—B.A.
(4 units) Prerequisite: EE 215
EE 218 Electron Devices I & II—B.A.
(8 units) Prerequisite: EE 210
EE 225 Electromagnetic Devices—B.A.
(4 units) Prerequisite: EE 216 or EE 218
EE 230 Analog Integrated Circuit—B.A.
(4 units) Prerequisite: EE 225
EE 235 Digital Integrated Circuits—B.A.
(4 units) Prerequisite: EE 230

All of the above courses are the same as those courses with similar names and numbers at the 300-level, except that they are designed for students in the B.A. in Electronics program. They are less rigorous than those at the 300-level. Students must have the consent of the Department faculty before taking these courses.

EE 290 General Laboratory
Practicum course work includes a wide range of topics related to operation of an academic engineering department. This work involves both training and experience. (variable units)

EE 305 Introduction to Signals and Systems
This course provides an introduction to general system-level evaluation of electrical signals and circuits as they interface with instruments and other systems. Topics include: types of electronic waveforms, general amplifier characteristics, the oscilloscope, meters, system-level analysis and design, Laplace and Fourier Transforms, feedback, and system stability. (Integral lab included) (4 units) Prerequisite: MATH 281

EE 310 Circuit Theory
The principles developed in this course serve as a foundation for all future engineering courses. Topics include circuit laws and theorems, analogs and duals in electrical and other natural systems, signal waveforms and processing circuits, natural response, forced response, complete response, steady-state AC circuits, general network analysis, and introduction to systems. (Integral lab included) (4 units) Prerequisite: MATH 282, MATH 286, PHYS 210, and PHYS 230

EE 315 Electron Devices I Prerequisite: EE 310
EE 316 Electron Devices II Prerequisite: EE 315
These courses continue the study of circuit theory by adding electron devices, which allow large amounts of energy to be controlled by much smaller amounts of energy, empowering the student to analyze and design more useful circuits. (4 units each)

Topics I: Physical operation of devices (vacuum tubes, scanning electron microscope, and field-effect transistors), circuit models and admittance parameters, biasing techniques, frequency response, small and large signal amplifiers, switches, oscillators, and noise reduction. (Integral lab included)

Topics II: Electronic conduction in solids, bipolar conduction mechanisms, circuit models and device parameters, biasing techniques, frequency response, small and large signal amplifiers, digital circuits, oscillators, noise mechanisms, and special circuits and devices. (Integral lab included)

EE 318 Electron Devices I & II
All material from EE 315 and EE 316 is covered in this course, but in an integrated format that includes deeper coverage of topics. (8 units) Prerequisite: EE 310

EE 325 Electromagnetic Devices
Circuit models previously developed are expanded to include electromagnetic devices. Topics include energy conversion, magnetic fields and circuits, transformers, electromechanics, DC machines, synchronous machines, and AC machines. (Integral lab included) (4 units) Prerequisite: EE 316 or EE 318

EE 330 Analog Integrated Circuits
This course goes beyond analysis of circuit elements to look at circuits in terms of building blocks that can be fitted together to form larger circuits and systems. It introduces operational amplifiers and other analog integrated circuit blocks, analyzing
both the internal structure of each device and common applications. Topics include differential amplifiers and feedback, the ideal operational amplifier and applications, non-ideal considerations, op-amps in regulation and control, non-linear circuits, and active filters. (Integral lab included) (4 units) Prerequisite: EE 316 or EE 318

EE 335 Digital Integrated Circuits
During the course several basic building blocks are constructed from discrete devices; these blocks are then used to construct almost all of the other types of digital circuitry. Topics include binary numbers; gates and digital logic; flip-flops; counters and shift registers; digital waveshaping and instrumentation; memory devices; binary arithmetic; and digital-to-analog and analog-to-digital conversion. (Integral lab included) (4 units) Prerequisite: EE 330

EE 350 Electromagnetic Field Theory I
All electronic phenomena involve the electromagnetic field, which transports energy and information and therefore structures correlation in the activity of current carriers. This course examines classical electromagnetic field theory and its applications in a wide range of technologically vital areas. Topics include Coulomb’s law, charge distributions, Gauss’s law, conductors, dielectrics, capacitance, Laplace’s equations, the Biot-Savart law, magnetic flux, Ampere’s law, inductance, and magnetic materials. (Integral lab included) (4 units) Prerequisites: EE 316 or EE 318 and MATH 283

EE 351 Electromagnetic Field Theory II
This course extends the development of electrostatics begun in EE 350 to electrodynamics and electromagnetic radiation, forming the foundations for the study of microwave engineering. Beginning with analysis of magnetic forces and the unified basis of the electric and magnetic fields, this course examines the theory and applications of classical electrodynamics. Topics include magnetic forces, magnetic materials, inductance, Maxwell’s equations, plane waves, transmission lines, waveguides, and antennas. (Integral lab included) (2 units) Prerequisite: EE 350

EE 370 Computer Applications in Engineering
In many cases, use of digital computers may simplify analysis and design of electronic circuits. After gaining experience with pre-packaged programs in previous courses, students in EE 370 write their own programs and learn to modify prewritten programs to meet specific needs. Topics include introduction to computers, the flow chart, non-linear algebraic equations, simultaneous linear equations, interpolation and numerical integration, initial value problems, finite differences, and computer graphics. (Integral lab included) (4 units) Prerequisite: EE 316 or EE 318

EE 380 Special Topics
This course includes independent or group study of special topics under the direction of resident or visiting faculty. (4 units) Prerequisite: consent of the instructor

EE 389 Laboratory Project—B.A.
This course is similar to EE 390, except that it is designed for students in the B.A. program. (4 units)

EE 390 Laboratory Project—B.S.
Students undertake a complete engineering project from initial concept to complete design and performance evaluation, one of the most valuable ways to stimulate creative potential and integrate classroom knowledge. This project may later be expanded for the required thesis project. (4 units) Prerequisite: consent of the instructor

EE 394 Thesis Proposal—B.A.
This course is similar to EE 395, except that it is designed for students in the B.A. program. (4 units)

EE 395 Thesis Proposal—B.S.
This course, coupled with EE 498 and other thesis work, is designed to allow the student to mature into an engineering professional before graduation. During the course of the project, the student must consolidate knowledge learned in other courses and go through every stage of a realistic engineering project, from initial research to final evaluation and presentation of results. (4 units) Prerequisite: consent of the instructor

EE 401 Research Project (UROP)
This course is similar to EE 390, except that the expectations are higher. Grading is pass/fail, but a high level of professional performance is expected for admission to the course and for receiving the minimum pass grade. (See “UROP,” page 102.) (4 units)

EE 402 Honors Research (UROP)
This course offers the opportunity for students to express their extra enthusiasm and creativity in parallel with standard course work. (See “UROP,” above.) (1 unit) Prerequisite: consent of the instructor

105
EE 403 External Research (UROP)
This course allows students to carry out a research and development project with the support and cooperation of an appropriate commercial company. The project must be developed in cooperation with, and be approved by, the Department, but may make extensive use of industrial support for equipment, technical advice, and parts. The project is evaluated and graded by departmental faculty, but the student’s industrial supervisor will also rate the performance. (4 units) Prerequisite: consent of the instructor

EE 420 Semiconductor Technology I
This course extends the electron device models introduced in Electron Devices and relates these models to state-of-the-art technology, and offers laboratory experience in analyzing semiconductor materials and fabricating semiconductor devices. In line with the latest trends of modern technology, the course focuses on gallium arsenide-based devices. Topics include physics and properties of semiconductors, diffusion, oxidation, photolithography, p-n junctions, metal-semiconductor contacts, Schottky diodes, and bipolar and field effect transistors. (Integral lab included) (4 units) Prerequisites: EE 350, EE 316 or EE 318, and MATH 308

EE 421 Semiconductor Technology II
This course is an extension of EE 420 and focuses mainly on design, fabrication, and characterization of semiconductor devices, especially GaAs devices. (2 units) Prerequisite: EE 420

EE 425 Control Systems
This course examines various self-referral methods used to control and stabilize an electronic system. Topics include open and closed loop configuration, stability analysis (Nyquist, Bode, and root locus methods), system response, transfer functions, and linear feedback. (Integral lab included) (2 units) Prerequisite: EE 425

EE 430 Analog Communications Systems
Modulation, the process of adding information to a carrier signal, is the central theme of this course. Topics include the Fourier transform, Parseval’s Theorem, amplitude modulation, frequency and phase modulation, superheterodyning techniques, demodulation, the sampling theorem, pulse amplitude modulation (PAM), pulse code modulation (PCM), and noise and probability theory in digital systems. (Integral lab included) (4 units) Prerequisite: EE 425

EE 435 Signals and Systems
In this course, we go beyond the individual details of electrical circuits and examine the system as a holistic unit; the holistic viewpoint allows us to reveal profound Laws of Nature that might otherwise never be noticed. A detailed theoretical analysis of the nature of signals is also included. Topics include linear time-invariant systems, Fourier analysis of continuous-time and discrete-time signals and systems, convolution, and an introduction to Laplace and Z transforms. (4 units) Prerequisite: EE 425

EE 440 Microcomputer Design
This course develops techniques for the design of processing and control systems based on the microprocessor chip—the “intelligent” core of the microcomputer. Topics include review of digital circuits, microcomputer structure and organization, microprocessors, interfacing, programming, and applications in instrumentation and control. (Integral lab included) (4 units) Prerequisite: EE 425

EE 450 Microwave Engineering
This course develops necessary theory and skills for design, construction, and characterization of microwave circuits. Students use state-of-the-art CAD tools such as Academy, Libra, and Microwave Spice, which allow complete design and implementation of circuits in just a few hours, compared with the several month period required for manual design and testing. Topics include: microstrip waveguides, microwave devices, analysis and design of microwave circuits, use of CAD software, and microwave measurements. (Integral lab included) (4 units) Prerequisite: EE 351

EE 460 Communications Systems A: Digital Modulation and Coding
This will be an in-depth study of various digital communications techniques and their related performance characteristics. Topics include: uncoded performance of Mary, FSK and PSK, performance of various coding systems including efficiency and bandwidth, synchronization and carrier reference, inter-symbol interference, base-band systems, equalization. (4 units)

EE 470 Communications Systems B: Digital Communications Circuits
This course covers specific world standards for implementing wireless communications systems. It includes design considerations and evaluation of performance for various systems. Topics include: general analysis of TDMA and spread spectrum systems, CDMA and its variations including 3G implementation, GSM and its variations, Bluetooth, and EDGE. (4 units)
EE 497 Thesis Project—B.A.
This course is similar to EE 498, except that it is designed for students in the B.A. program. (4 units) Prerequisite: EE 351

EE 498 Thesis Project—B.S.
This project allows students to integrate classroom and laboratory experience in a professional format. The project may include lab work in addition to the work begun in EE 395 Thesis Proposal. Students prepare a written and oral project proposal, undertake written documentation and oral defense of the project, and condense the written documentation into the appropriate form for publication, if time permits. (4 units) Prerequisite: consent of the instructor

EE 499 Directed Study
(variable units) Prerequisite: consent of the Department faculty

Mechanical Engineering Courses

ME 250 Engineering Graphics
This course introduces students to advanced concepts and skills of Computer-Aided Design, using commercial software with full 3-D capability such as Cadkey, the ability to create databases for computer-aided manufacturing (CAM), perform advanced analysis of material properties, and generate photorealistic rendering of objects. Topics include basic graphics shapes, three-view sketching, three-dimensional wireframes, wireframes of revolution, three-dimensional solid objects, and final assembly drawings. (Integral lab included) (4 units) Prerequisite: consent of the instructor

ME 285 Mechanical Design
This course integrates the classical theoretical concepts of engineering mechanics and dynamics with the advanced rendering and analysis capability of state-of-the-art CAD software, such as Cadkey. Topics include distributed forces, center of mass and centroid, equilibrium of particles and rigid bodies, trusses and frames, internal forces, shear-moment diagrams, friction, moments of inertia, kinematics, forces and accelerations, work and energy, impulse and momentum, mechanical vibrations, 2D and 3D Computer Aided Design and Analysis, projection and rotation in 2D and 3D, hidden line removal and rendering with variable light sources, and computer analysis of 3D objects. (Integral lab included) (8 units) Prerequisite: MATH 281

ME 310 Statics
Statics shows how the whole diversity of mechanical structures acts in accordance with very basic laws of nature (Newton’s Laws). Topics include distributed forces, center of mass and centroid, equilibrium of particles and rigid bodies, trusses and frames, internal forces, shear-moment diagrams, friction, and moments of inertia. (4 units) Prerequisites: ME 250 and MATH 285

ME 320 Dynamics
Dynamics explores in detail a fundamental first principle of motion (Newton’s Second Law) as it applies to the acceleration of particles, the acceleration and rotation of rigid bodies, and the movement of fluids. Topics include kinematics, forces and accelerations, work and energy, impulse and momentum, mechanical vibrations, and introduction to fluid mechanics. (4 units) Prerequisites: ME 310 and MATH 308

ME 499 Directed Study
(variable units) Prerequisite: consent of the Department faculty

Graduate Courses for the M.S. in Applied Physics: Devices and Systems for Wireless Communications

PHYS-EE 505: Review of Communications Systems
This course will provide an intensive review/overview of topics that students need as prerequisite material for other courses. Most material should have already been taken in undergraduate courses, so coverage will be fast-paced.

PHYS 525: Semiconductor Physics and Devices
The course covers the fundamental principles of solid-state physics at the basis of semiconductor structure and properties, as well as the design and fabrication of semiconductor devices with specific desired properties. Emphasis is on state-of-the-art Gallium Arsenide devices and applications for microwave communications systems. Theory is supported by hands-on laboratory experience with fabrication and testing, as well as use of industry-standard computer software for design and simulation of devices, circuits, and full systems. Topics include: crystal structure, lattice types, electrons in a periodic potential, energy bands, electrons and holes in semiconductors, donors and acceptors, intrinsic carrier concentration, electron and hole mobilities and drift velocities, transport and electrical properties of semi-
PHYS 527: Microwave Fields A: Microstrip Integrated Circuits
The course covers the transmission of microwaves in wave guides and transmission lines as well as the physical properties of microwave fields in relation to a lightly bound medium, microstrip. These properties will then be used to design and simulate systems that enliven specific characteristics of the waves and allow them to be accurately processed by transistors and Microwave Integrated Circuits. Students are introduced to the basic physical principles and the analytical and numerical methods used in impedance matching for wave guides and transmission lines. Laboratory will include extensive use of Agilent Advanced Design System (ADS) software, the industry standard for design of wireless communication systems. Topics include: electromagnetic fields in dielectrics and conductors, surface fields, lossless and lossy transmission lines, printed circuit lines and microstrip, impedance matching, use of Smith Chart for analysis and design, low noise amplifiers, narrow and wide band amplifiers, combiners and couplers, power amplifiers, intermodulation, oscillators, mixers, modulators, demodulators, circuits for digital communications systems. (4 units) (Undergraduate equivalent to this course is PHYS 465)

PHYS 540 Semiconductor Physics and MMICs
Integrated circuits have dramatically different properties depending on whether they are used for base-band digital processing or RF/Microwave sections for transmitters and receivers. This course covers the principles of physical chemistry behind semiconductor processing as well as the design of Monolithic Microwave Integrated Circuits. Topics are chosen to support design of wireless communications systems and include: materials and technologies used for fabrication of MMICs, design and fabrication of passive components and active devices for MMICs, design and fabrication of digital communication subsystems for use in MMICs. Laboratory includes extensive use of Agilent Advanced Design System software. (4 units)

PHYS 545 Microwave Fields B: Radiation and Antennas
The course covers the emission, propagation and detection of electromagnetic fields at microwave frequencies, the characteristics of emitting and receiving antennas, and the propagation of microwave fields through absorbing and diffracting media. Students are introduced to the design and analysis of various types of transmitting and receiving antennas, and to the methods to estimate noise, losses and fading in microwave propagation resulting from absorption, reflection and diffraction by the atmosphere and solid obstacles. Laboratory will include extensive use of Agilent Advanced Design System (ADS) software, the industry standard for design of wireless communication systems. Topics include: antenna parameters, special antenna types, antenna arrays, CAD of antennas, reciprocity for emitting and receiving antennas, free-space propagation of microwave fields, diffraction, reflection interference, absorption, noise classification, signal-to-noise ratio, multi-path signals, fading estimation and system evaluation. (4 units) (Undergraduate equivalent to this course is PHYS 465)

EE 530 Communications Systems A: Digital Modulation and Coding
This will be an in-depth study of various digital communications techniques and their related performance characteristics. Topics include: uncoded performance of Mary, FSK and PSK, performance of various coding systems including efficiency and bandwidth, synchronization and carrier reference, inter-symbol interference, base-band systems, equalization. (4 units) (Undergraduate equivalent to this course is EE 460)

EE 550 Communications Systems B: Digital Communications Circuits
This course covers specific world standards for implementing wireless communications systems. It includes design considerations and evaluation of performance for various systems. Topics include: general analysis of TDMA and spread spectrum systems, CDMA and its variations including 3G implementation, GSM and its variations, Bluetooth, and EDGE. (4 units) (Undergraduate equivalent to this course is EE 470)

APMA 530 Statistical Process Analysis
This course will present statistical-based methods used by leading manufacturing companies worldwide. The emphasis will be on methods of statistical process analysis used to improve manufacturing processes and product quality, decrease variation in key quality characteristics of products, reduce product defects, improve productivity, lower costs, and increase customer satisfaction and retention. Examples of applications in semiconductor manufacturing will be emphasized. Topics include: graphical and numerical methods for describing process variation, applied probability and statistics for statistical process analysis and quality control, modeling processes with discrete and continu-
ous probability distributions, statistical inferences about process parameters, assessment of measurement capability, statistical process control charts for continuous and discrete process measurements, principles of subgroup or sample selection, interpretation of control chart patterns, detection of changes in process performance, identification of assignable causes of variation, statistical process analysis for autocorrelated process data, process capability analysis and capability indexes, introduction to systems of continuous quality improvement such as “six-sigma” programs and total quality management. (4 units, 4 months)

APMA 560 Experimental Methods and Statistics for Process Improvement

The focus of this course is how to plan, execute, and analyze well-designed industrial experiments for the purpose of improving or developing manufacturing processes. The principles taught in this course have been extensively applied in leading manufacturing companies worldwide. Applications in semiconductor manufacturing will be emphasized. Well-designed experiments can result in increased process yields, reduced variability and closer conformance to specifications, reduced development time, lower costs, and increased functionality and reliability of products. Topics include 2k factorial experiments, blocking, analysis of variance, design resolution and aliasing, fractional factorial experiments, Plackett-Burman designs, regression analysis, response surface methods, central composite experimental designs, steepest descent and simplex optimization methods, evolutionary operation, and Taguchi and other robust design methods. (4 units, 4 months)

PHYS-EE 510: Professional Effectiveness

This is a seminar on how to work effectively in a professional (and personal) environment. Topics include: writing reports and resumes, how to do interviews for employment, how to search for a professional position, how to write a cover letter, how to choose your work environment, managing expenses, how to arrange for living accommodation and transportation, and comparison of expenses in various American cities in relation to income. (1–4 units)

PHYS-EE 580: Practicum

All students must perform a minimum of one year of Curricular Practical Training, normally fulfilled by working full time in an industrial environment, such as a wireless communication systems-related company. (8 units)
INTRODUCTION

The Department of Exercise and Sport Science is committed to offering a wide range of sport and recreation activities to meet the needs of our diverse international population. The Department administers undergraduate recreation courses, intercollegiate and recreational sports clubs, and teaches selected courses in exercise and sport science. Recreation classes serve as a dynamic activity to balance the academic routine of students. Sports clubs and intramural events provide ongoing competition for sports enthusiasts.

The Department is very proud to offer a high quality outdoor recreation/adventure program. We offer day, week and month-long courses in experiential outdoor recreation and leadership. We engage in many activities such as windsurfing, whitewater kayaking or canoeing, sea kayaking, flat-water canoeing, rock climbing, swimming, horseback riding, hiking, backpacking, and skiing. We travel to locations throughout the United States and Arizona. We have also held six-week courses in New Zealand and Australia.

SPECIAL FEATURE

Each fall the Department offers its Base Camp, where all freshmen and selected faculty and upperclassmen spend 4 days in a wilderness experience. The students have the opportunity to build friendships for a lifetime as they engage in activities like canoeing, caving, swimming, and mountain biking.

DEPARTMENTAL REQUIREMENTS

Recreation Requirement for All Undergraduate Degrees

To graduate with any bachelor or associate degree, students must complete the course, Health-Related Fitness, plus engage in daily dynamic physical activity of at least 30 minutes duration Monday to Friday and 45 minutes on the weekend. A selection of courses is offered in each block to give students instruction and structure to their physical activity. Please contact the Department for specific course offerings in each block.

COURSE DESCRIPTIONS

ESS 103 Base Camp: Building Friendships
Students, faculty, and staff go to a wilderness area for a camping trip to help build friendship and understanding between all three groups with the goal of establishing cooperation for future endeavors. Activities include canoeing, biking, and hiking, as well as learning “outdoor” skills. (1 unit)

ESS 210 Physiology of Fitness
This course presents the fundamentals of anatomy and physiology of exercise, such as how the body responds, adjusts, and adapts to exercise. Students are also introduced to laboratory fitness testing and assessment. (4 units)

ESS 315 Coaching and Teaching of Skills
In this course students learn the principles of skill acquisition and skill analysis. In addition, the course offers prospective coaches or instructors the teaching skills necessary to teach in a variety of sport settings. (4 units)

ESS 320 Practicum
Through daily observations and teaching or administering, students quickly assume the responsibilities of an exercise and sport science professional. Critiques by faculty and students, twice weekly meetings, and regular observations promote growth toward effective teaching and administration practices. (4 units) Prerequisite: ESS 315

ESS 325 Leadership in Adventure Sports
This course teaches the student leadership skills in a variety of adventure sports such as backpacking, canoeing, kayaking, and rock climbing. The course includes field trips to locations in the Midwest. (4 units)
ESS 330 Ecology and Outdoor Adventure
This course explores the diverse ecosystems of North America through first-hand field experiences. Students travel to outstanding wilderness ecosystems and study one or more of the following: mountains, forests, prairies, deserts, rain forests, freshwater lakes and streams, oceans, coastal regions. The unique plants, animals, weather, geology, and history of human occupation are studied in order to gain a holistic understanding of each ecosystem. Examples of study areas: Northern Arizona (Grand Canyon), Rocky Mountains (Colorado, Wyoming), Northwoods (Minnesota, Ontario), Cape Cod (Massachusetts). (4 units—may be repeated) Prerequisite: permission of instructor

ESS 336 Introduction to Movement Science
This overview course presents the fundamentals of the anatomy and physiology of exercise, skill acquisition and skill analysis, and care and treatment of common athletic injuries. (4 units)

ESS 398 Research
In this course students enrich their knowledge with practical experience of laboratory research and field testing techniques of exercise and sport science. (variable units) Prerequisite: consent of the Department of Exercise and Sport Science and the Academic Standards Committee

ESS 498 Internship
This internship offers practical and advanced knowledge and experience in a specific area of Exercise and Sport Science. Students apply classroom knowledge in a professional setting which may be on or off campus. Students gain in-depth experience and submit a report on all their internship activities. (variable units) Prerequisite: consent of the Department and the Academic Standards Committee

ESS 499 Directed Study
(4 variable units) Prerequisite: consent of the Department faculty
INTRODUCTION

Scientific advancements depend upon the effective development of scientists of each age. Scientists working in the fields of environmental science, agriculture, and biology use a variety of techniques to explore nature and the responses of natural systems to natural and human influences. Each new angle of exploration uncovers some new understanding of the laws of nature governing living things. The new knowledge can then be applied to make improvements in agricultural practices or management of the environment. Through study of pure and applied life sciences, students come to appreciate not only the hierarchy of organization of living systems and their underlying unity, but also the practical value of this knowledge in enabling humans to be the best possible custodians of the earth.

The Department of Life Sciences offers programs at the leading edge of sustainable living and biology. In these programs, students learn the most up-to-date knowledge and gain hands-on, practical experience in applying what they learn. Sustainable development is a concept typically referring to entire nations or broad geographical regions. When sustainable development is applied to local communities, the critical problems we face are fundamentally those of human consciousness. They arise when people do not use the full potential of their creativity and intelligence and, as a result, violate Laws of Nature.

Maharishi University of Management is the first university in the world to expand the scope of sustainable living to include the knowledge of how to live in accord with Natural Law—how to avoid creating problems in the first place. This can be done only from the level of consciousness itself. In our study of consciousness we realize that the keys to solving puzzles in Nature are the keys to our own consciousness. It is through developing awareness of the true connection between humans and their surroundings that we will see lasting progress in sustainable living and the quality of the environment.

Programs Offered

• B.S. in Biology, as preparation for medical school or advanced study in biology
• Minor in biology which allows students in other majors to gain fundamental knowledge of biological principles and systems
• B.A. in Sustainable Living, which prepares students for careers in sustainable community development and environmental coordination, or further study and research
• Minor in Sustainable Living provides students with a practical foundation for understanding the principles and practices of environmental design for communities
• Certificate in Sustainable Agriculture

SPECIAL FEATURES

• The faculty place special emphasis on guiding students to gain the skills necessary to conduct original research in preparation for academic and research careers.
• In response to critical pressure on our planet’s natural resources, emphasis is on preparation in skills and knowledge that support the development of sustainable environmental practices.
• Research is conducted by the Department into ancient Vedic knowledge of human physiology to illuminate and extend modern physiologists’ understanding of the human organism in light of the universal and unifying principles of Natural Law.
DEPARTMENTAL REQUIREMENTS

Entrance Requirements for the Biology Major

Before entering the biology major, students must successfully complete the following courses: College Composition II (WTG 152), Functions and Graphs I (MATH 161), and Functions and Graphs II (MATH 162).

Graduation Requirements for the Bachelor of Science Degree in Biology

To graduate with a B.S. in Biology, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the major are 60 units of course work as follows:

52 units of required courses:
• BIO 250 Plant Science
• BIO 260 Living Systems
• BIO 261 Zoology
• BIO 317 Ecology
• BIO 405 The Sustainable Global Environment
• CHEM 201 General Chemistry I
• CHEM 202 General Chemistry II
• CHEM 203 General Chemistry III
• CHEM 311 Organic Chemistry I
• CHEM 312 Organic Chemistry II
• CHEM 313 Organic Chemistry III
• MATH 281 Calculus I
• MATH 353 Probability and Statistics I

plus 4 units from the following:
• PHYS 210 Introduction to Classical Mechanics I
• PHYS 224 Solids, Fluids, and Thermodynamics

plus 4 units from the following courses:
• BIO 350 Cell Biology
• BIO 352 Microbiology
• CHEM 350 General Biochemistry

NOTE: By completing the chemistry courses listed above, students also satisfy the requirements for the chemistry minor.

Requirements for the Biology Minor

To graduate with a minor in biology, students must successfully complete 20 units of course work as follows:

4 units of required course work:
• BIO 260 Living Systems

plus 16 additional units of course work in biology

Entrance Requirements for the Sustainable Living Major

Before entering the sustainable living major, students must successfully complete the following courses: College Composition II (WTG 152) and Elementary Algebra (MATH 152).

Graduation Requirements for the Bachelor of Arts Degree in Sustainable Living

To graduate with a B.A. in Sustainable Living, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the major are 108 units of course work as follows:

76 units of required courses:
BIO 338 Organic Vegetable Production
BIO 341 Permaculture Design
BIO 375 Earth Science
BIO 405 Sustainable Global Environment
FA 201 Art and Nature
MGT 203 Personal Finance
MGT 402 Global Environmental Management
SL 200 Field Ecology / Sport-Adventure
SL 205 Practical Human Physiology
SL 210 Functional Human Relationships
SL 215 Critical Thinking
SL 220 Leadership, Team-building, and Creativity
SL 330 Bio-Cultural Ethics
SL 346 Maharishi Sthapatya Veda Design
SL 420 Green Energy
SL 425 Green Entrepreneurship
SL 440 Green Marketing
SL 445 Environmental Law
SL 450 Environmental Planning and Landscape Architecture

plus a minimum of 28 units of the following:
SL 429 Senior Capstone Prep
SL 430 Senior Capstone Project
Requirements for the Sustainable Living Minor

To graduate with a minor in Sustainable Living, students must successfully complete 20 units of course work as follows:

4 units of required course work
• BIO 341 Permaculture Design

plus 16 additional units of course work in Sustainable Living

Graduation Requirements for the Bachelor of Arts Degree in Chemistry

To graduate with a B.A. in Chemistry, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) Since this program is designed for students wanting to teach chemistry at the secondary level, an application for the teacher education program must be submitted to the Department of Education. The requirements for the major are 38 units of course work as follows:

22–24 units of these six required courses:
• CHEM 201 General Chemistry I
• CHEM 202 General Chemistry II
• CHEM 203 General Chemistry III
• CHEM 311 Organic Chemistry I
• CHEM 312 Organic Chemistry II
• CHEM 313 Organic Chemistry III

plus 16 units from the following courses:

• Any of the BIO courses from BIO 250–BIO 499
• CHEM 204 Quantitative Analysis
• CHEM 350 General Biochemistry
• MATH 281 Calculus I
• MATH 282 Calculus II
• MATH 353 Probability and Statistics I
• PHYS 210 Classical Mechanics I
• PHYS 224 Solids, Fluids, and Thermodynamics

NOTE: Students wanting to add a biology teaching specialty to this teacher education program in chemistry can do so by taking at least 15 semester units of course work in biology.

Entrance Requirement for the Minor in Chemistry

Before entering the minor in chemistry, students must successfully complete Functions II (MATH 162).

Requirements for the Chemistry Minor

To graduate with a minor in chemistry, students must complete 20 units of required course work as follows:

• CHEM 201 General Chemistry I
• CHEM 202 General Chemistry II
• CHEM 203 General Chemistry III
• CHEM 311 Organic Chemistry I
• CHEM 312 Organic Chemistry II

Special Features of the Certificate in Sustainable Agriculture

Students enrolled in the Certificate in Sustainable Agriculture program gain the knowledge necessary for a field management position in an organic agricultural business, including knowledge of soil sciences; principles of organic and Maharishi Vedic Organic agriculture and the requirements for certification; mastering techniques of greenhouse growing; and successfully overseeing a full crop cycle. This is a twelve-month program of full-time study and practical training.

Graduation Requirements for the Certificate in Sustainable Agriculture

To graduate with a Certificate in Sustainable Agriculture, students must successfully complete 21 units of course work plus the Research in Consciousness course. The courses are as follows:

BIO 240 Greenhouse and Winter Growing (2 units)
BIO 241 Organic and Maharishi Vedic Organic Certification (variable units)
BIO 270 Soil, The Basis of Agriculture (4 units)
BIO 338 Organic Vegetable Production (4 units)
BIO 341 Permaculture (4 units)
BIO 410 Soil Fertility (1 units)
BIO 415 Farm Business Management (4 units)
FOR 100 The Science of Creative Intelligence (4 units)
RC 320 Research in Consciousness (1 unit)

COURSE DESCRIPTIONS

NOTE: 4-unit courses may be offered for 3 units during shorter blocks.

BIO 101 Physiology is Consciousness: Awakening the Cosmic Potentiality of the Human Brain

The course will explore the new paradigm in science that the “Physiology is Consciousness.” Current concepts of mind and body will be understood in terms of this new paradigm.
The human brain is unique in the universe. The unfathomably complex fabric of the brain neuropil rivals the billions of shining galaxies. This course examines the contribution of the Vedic Tradition of knowledge to our understanding of brain structure and function, and hence, the potential that lies within every individual. The exponential growth of modern scientific understanding, during the last 100 years, primarily the last 50 years, has created a situation in which we have an urgent need to understand the relationship between consciousness and our physiology. This course will present our facts of brain structure and function in light of Maharishi’s Vedic Science and Raja Raam’s Discovery of Veda and Vedic Literature in human physiology. We will examine how our brain constructs reality at every moment and how, from Vedic Science, the transcendental field of life, the home of all the laws of nature, is the source of these myriad physiological impulses seamlessly orchestrated to produce what we call human experience. We will study how the experience of unboundedness, the Self of every individual, can transform our physiology and awaken the total creative potential of the brain in enlightenment, the birthright of every human being. (4 units)

BIO 240 Greenhouse and Winter Growing
Strategies for extending the growing season are based on modifying the microclimate and/or choice of adapted crop varieties. Ways to modify the microclimate range from simple techniques such as growing on south slopes and using windbreaks, through row covers and cold frames, to elaborate greenhouses. Many vegetable crops are surprisingly well adapted to growth or harvest during the cold months of the year. This course will examine these strategies with an emphasis on matching crops with favorable microclimates. (2 units)

BIO 241 Organic and Maharishi Vedic Organic Certification
Organic agriculture is the fastest growing segment of agriculture. National and international rules act as quality control mechanisms for organic production and processing, ensuring that consumers receive the quality they expect when they purchase products labeled organic. Organic standards include guidelines for soil fertility, seeds, crop rotations, pest management, handling, processing, labeling, and other requirements for products to be sold as organic. Maharishi Vedic Organic standards provide an additional level of quality for food while enlivening Natural Law in the farmer and in society. This course provides a thorough understanding of United States National Organic Standards as well as Maharishi Vedic Organic standards. (variable units)

BIO 250 Plant Science
Photosynthetic plants, the source of energy for all life on earth, are the principal topic of this introductory course. The plant groups covered are vascular plants, bryophytes, algae, and fungi. Basic concepts in the physiology, genetics, anatomy, ecology, and evolution of plants are also included. (4 units)

BIO 260 Living Systems
This course covers aspects of biology fundamental to all forms of life—biochemistry, cell biology, genetics, and evolution. Emphasis is placed on the expressions of intelligence, order, and integration found at different levels of biological organization. (4 units)

BIO 261 Zoology
The diversity of animal life and the unifying principles of animal physiology, growth, and reproduction are covered in this course. In addition, general principles of community and ecosystem ecology are included. (4 units) Prerequisite: BIO 260

BIO 270 Soil, the Basis of Agriculture
This course gives an introduction to soil science with a view to sustainable soil management. Students will study soil fertility; soil genesis and classification; soil texture, structure, and chemistry; soil water; and soil organisms. Management of soil pH and soil salinity will also be studied. Laboratories and field trips will illustrate principles learned in classes. (4 units) Prerequisite: CHEM 201

BIO 317 Ecology
This course pursues the intricate, dynamic, interrelated structure of the biosphere. Topics include natural selection and adaptation, species interactions, ecosystem processes, and behavioral ecology. (4 units) Prerequisite: BIO 261

BIO 320 Plant Physiology
The physiology of plants reflects the metabolism, movement, and development directed by the sequential unfolding of intelligence in their DNA. Topics include photosynthesis, respiration, transport, growth substances, movements, and biorythms. (4 units) Prerequisite: BIO 250

BIO 322 Plant Taxonomy
The classification of plants ultimately makes use of all that is known about their structure, physiology, genetics, and ecology to arrange them into a logical system for identification and study. This course, which emphasizes the local flora, devel-
ops skills in observation and interpretation to name, identify, and classify vascular plants according to evolutionary relationships. (4 units) Prerequisite: BIO 250

BIO 324 Plant Anatomy
Plant structure in relation to function is the subject of this course. Investigation includes all levels of organization from organelles and cell walls to cell and tissue types, and finally organs (roots, stems, leaves, and flowers). The dynamic aspects of structure—development, physiology, and evolution—are emphasized. (4 units) Prerequisite: BIO 250

BIO 328 Ethnobotany
Plants have met a large proportion of man’s physical needs for ages and continue to do so today, though often in new and less obvious ways. The broad scope of such use is the subject of this course, covering not only food and shelter but also clothing, herbs and spices, ornamentation, medicine, soaps, cosmetics, rope, rubber, and artistic uses. Also included are the many modern conveniences that have their basis in plants, such as the generation of plastics and electricity from petrochemicals and fossil fuels. (4 units)

BIO 335 Agricultural Ecology
Plants interact with other plants and their environment in a variety of ways. This course examines competition and positive interaction among crop plants, and between crops and weeds, insects, and pathogens. Topics include competition for light, nutrients, and water; allelopathy; intercropping; living mulches and cover crops; and sustainable weed, disease, and insect management. This is a practical course in which students will spend approximately half of their time gaining experience in the University’s vegetable garden and applying the principles learned in class. (4 units) Prerequisite: BIO 317

BIO 338 Organic Vegetable Production
This course includes general principles of vegetable production, such as transplanting, irrigation, fertility, pest management, harvest, storage, marketing, and environmental influences. Specific management requirements for important vegetable crops will also be discussed. Students spend approximately half of their time in class learning principles of vegetable production and half of the time applying their knowledge and gaining practical experience in the University’s vegetable garden. (4 units)

BIO 340 Sustainable Field Crops
This course covers characteristics, adaptability, and importance of grain, legume, and forage crops. The application of physiological and ecological principles to sustainable crop management is studied, including crop production, crop rotations, weed control, and factors affecting yield. (4 units)

BIO 341 Permaculture Design Course
Permaculture is the conscious design and maintenance of cultivated ecosystems. Permaculture promotes land use systems that work with nature’s rhythms and patterns to create a stable society by utilizing resources in a sustainable way. Through lecture, discussion, observation, field trips, hands-on learning, videos, slide shows, and handouts, the Permaculture Design Course teaches the practical skills and theoretical knowledge to design and implement sustainable systems in harmony with the natural world so participants can understand and apply these methods and skills to their home property and local community. Participants will learn principles and methodologies of sustainable design, how to read the landscape’s strategies and tools for urban and rural homesteads, food forests and orchards, greenhouse operation, natural building and alternative energy techniques. (4 units)

BIO 342 Pomology
This course is the study of fruits and nuts, including propagation, culture, quality factors, and storage, with an emphasis on sustainable practices. Topics include the importance of climate and site selection, flowering and pollination, training and pruning, and orchards as agroecosystems. (4 units)

BIO 344 Ornamental Horticulture
This course is an introduction to the principles of propagation, culture, and management of plants that are grown for their beauty. Flowers, landscape plants, turf, and indoor and outdoor foliage plants will be included. Laboratories give students practical experience in methods of propagation and culture of a variety of ornamental plants. (4 units)

BIO 348 Special Topics in Agriculture
This course gives students an opportunity to study topics in agriculture that may not be emphasized in other courses. Students may apply their knowledge and gain direct experience through field work in the University’s vegetable garden and greenhouse. Emphasis is on practical applications of vegetable production, current issues in agriculture, or topics of special interest to the students. (4 units, may be repeated) Prerequisite: consent of instructor

BIO 350 Cell Biology
The cell is revealed as the most fundamental unit of biological life, containing self-referral homeostatic feedback mechanisms for maintaining internal order and stability in the presence of
external changes. Topics include organelles and their functions; cell cycle; membrane structure and function; signal transmis-
sion, differentiation, and transformation; and cellular mech-
anzms of aging. (4 units) Prerequisite: BIO 260

BIO 352 Microbiology
This course provides a basic understanding of the fascinating
world of unseen microorganisms; bacteria, fungi, protozoa,
algae, and viruses. Their diversity, ecological importance,
commercial and industrial applications, as well as their role in
disease will be examined, using the tools of light microscopy,
growth of microorganisms, isolation of pure cultures, chemical
characterization and identification, and their physical and
chemical control. (4 units)

BIO 355 Evolutionary Biology
DNA, the material which expresses the flow of biological
intelligence in all the various levels of physiological organi-
zation, is the basis of inherited traits. DNA contains within
itself mechanisms for its own evolution. This course exam-
ines evolutionary processes at several levels of biological
organization, from the molecular scale to phylogeny. (4 units)
Prerequisite: BIO 261

BIO 360 Conservation Biology
By careful application of ecological theory and natural histo-
ry, it should be possible to preserve biological diversity. This
course covers the theory and practice of conservation biology
and the interaction of the needs of conservation with human
societies. (4 units)

BIO 367 Molecular Biology
This course considers the frontiers of development in the
areas of DNA structure and the control of gene expression. A
major focus is the study of the key mechanism by which
knowledge is stored within DNA, the source of intelligence
directing the structure, function, and evolution of an organ-
ism. (4 units) Prerequisite: BIO 260

BIO 370 Oceanography and Atmospheric Science
The oceans and the atmosphere are the most dynamic aspects
of the biosphere, each largely a function of the other. This
course explores the properties of water and the many aspects
of marine biology as well as ocean currents, waves, and tides.
Climate and the great weather engine are the principal topics
covered in atmospheric science, along with turbulent phe-
nomena such as tornadoes, hurricanes, and the effects of El
Niño. (4 units)

BIO 375 Earth Science
The earth is a dynamic system, driven by its internal struc-
tures and processes, and interacting with life, the air, and
water. This course emphasizes the geological and biological
processes responsible for landforms and the chemical composi-
tions of soils, the atmosphere, and bodies of water. (4 units)

BIO 380 Biology Research
In this course students enrich the knowledge they have gained
with practical experience in the techniques of modern labora-
tory research. With prior approval of the laboratory supervi-
sor, students work in one of the following laboratories: bio-
chemistry, neurophysiology, immunology, or aging and immortality. (4 units, may be repeated) Prerequisite: consent
of instructor

BIO 403 The Environment and Maharishi Vedic Science
In this course students approach key environmental issues
from a holistic perspective. They learn to relate specific parts
of systems to the whole of the system, and the whole system
to the underlying field of creative intelligence. Students learn
to approach the solution of environmental problems, not just
on a superficial level, but also by using the underlying field of
integrating and organizing intelligence—technologies that
enliven and harmonize all aspects of the system and restore
the underlying sequence of evolution which spontaneously
integrates all things in a natural and holistic way. (4 units)

BIO 405 The Sustainable Global Environment
Structuring a living environment that can be maintained on a
global scale for all future generations calls for substantial
changes in our current way of life. This course provides a
broad perspective for transforming the way we think about
such issues as population growth, global ecology, land and
wildlife resources, renewable energy sources, and sustainable
agriculture. (4 units)

BIO 407 Applied Environmental Management
This course emphasizes interdisciplinary approaches to an
analysis of the solutions of environmental problems. It focuses
on a particular real-world problem, integrating modern sci-
cence and Maharishi Vedic Science as well as cultural and his-
torical trends to develop a comprehensive analysis of the
problem including both short-term and long-term solutions.
Approximately half of the course will be spent doing field-
work. (4 units) Prerequisites: BIO 405 and 4 units of SCI
course work
BIO 410 Soil Fertility
Soil fertility management harnesses the organizing power of nature to provide the basis for successful crop production. This course provides an understanding of soil tests; soil organic matter; organic soil amendments such as compost, green manures, and animal manure; and natural mineral fertilizers. Specific management requirements for macronutrients and micronutrients are studied in light of nutrient cycles in the environment, reactions within the soil, and interactions between roots, soil, and soil organisms. (4 units) Prerequisite: BIO 270

BIO 415 Farm Business Management
This course provides an introduction to enlightened management of a farm business. Students learn to measure a farm’s financial condition and productivity and to use holistic principles in planning and decision making. Marketing options are explored, including farm stands, farmers markets, community-supported agriculture, and wholesale markets. The course includes discussion of effective management of human resources and machinery. (4 units)

BIO 497 Internship in Teaching Life Sciences
This course is designed to allow advanced undergraduate students of good academic standing the opportunity to assist an instructor in teaching a biology course. It is especially recommended for those students who plan to go into a teaching career or who expect to help finance graduate work through teaching assistantships. In most cases it will involve helping the instructor with course planning, small discussion groups, homework and quiz grading, particularly in the first year biology Natural Law Seminar. Some lecture preparation and presentation may also be included as a teaching experience. (4 units)

BIO 498 Internship in Agriculture
This course offers practical experience through work in the University’s vegetable farm or at another farm or farm business. Students will keep a journal in which they record the activities they have performed, what they have learned, what they have contributed, and suggestions they have for improvements in the farm or business. (4 units, may be repeated) Prerequisite: consent of the Department faculty and the Academic Standards Committee

BIO 499 Directed Study
(variable units) Prerequisite: consent of the Department faculty

SUSTAINABLE LIVING COURSES

SL 200 Field Ecology and Sport Adventure
This is a special six-week course that will begin with a foundation in ecology. Students will learn that the biosphere is not just a static web of life; it is a series of intricate, dynamic structures interlinked through constant flux and transformation. The last three weeks of the class will be a field trip to a scenic location to observe the principles studied in the classroom — species interaction, ecosystem processes, natural selection and adaptation applied in nature. The trip will also include an adventure sport component with challenges such as biking, rock climbing and river rafting. Included in this cross-disciplinary mix will be field applications of leadership and team building relevant to both human relationships and ecological sensitivity. (4 units)

SL 205 Practical Human Physiology
Individual health is a microcosm of the health of the planet. To prepare students for creating a non-toxic, disease-free society, they will learn self-care. This course provides understanding of the different elements of the body and how to keep them balanced and strong. Health-care experts will teach useful information about one’s own body as it relates to health, longevity, relationships, family, and career. Rather than an in-depth anatomical analysis of the body, the emphasis will be on practical information. Maharishi Vedic Medicine, the world’s oldest system of natural health care, will be prominently featured in the course. (4 units)

SL 210 Functional Human Relationships
From friendships to business partnerships, marriages to parent-child connections, society is a network of relationships. This class will explore the various categories of human relationships and how each can be mutually rewarding and sustainable. Students will learn how to draw on their own inner reservoir of energy, to give the maximum to others without getting drained or overshadowed by circumstances. We will also look at conflict resolution and how to turn perceived enemies into friends. (4 units)

SL 215 Critical Thinking
Critical thinking is the extreme opposite of jumping to conclusions. This course will teach students to analyze a situation and understand all its circumstances. They will learn to zero in on the most useful information and then use it in a fair and logical way. The class will also explore the difference
between fundamental, primary, and secondary choices. Much of the class time will be devoted to exercises that center around important issues in one’s own life. (4 units)

SL 220 Creativity, Leadership and Team-Building

Living in a sustainable manner requires a special kind of creativity — the ability to solve long-standing problems and integrate diverse areas of life. This course will expand one’s capacity for seeing new angles and finding innovative solutions. Students learn how to act in harmony with Nature’s laws and thereby achieve maximal results with minimal effort. They will gain thorough understanding of the creative cycle of germination, assimilation, and completion, and at the same time, learning the gentle art of inspiring and mobilizing others, including tools for motivating and harmonizing different personality profiles. (4 units)

SL 330 Bio-Cultural Ethics

This course discusses the biological aspects of treating all people fairly regardless of economics, geography or lifestyle. Is it ethical to genetically engineer a tomato and then sell it without informing the public? Is it appropriate to learn about medicinal herbs from native healers and then patent the active ingredients? Is it fair for the United States, with five percent of the world’s population, to use 25 percent of its raw materials? Often questions of fairness extend to other life forms, and some issues are particularly difficult and nuanced: Damming waterways, for instance, generates clean, renewable energy, but it can also flood villages, upset ecosystems, and destroy fisheries. This class will teach students to think deeply and consider all sides of bio-cultural dilemmas, arriving at equitable, workable solutions. (4 units)

SL 346 Maharishi Sthapatya Veda Design and Green Architecture

This course will examine the relationship of human beings to the buildings they create. We will look at the key principles of Maharishi Sthapatya Veda design, as revived by His Holiness Maharishi Mahesh Yogi, including orientation, proportion and spatial arrangement. The goal of this ancient science, to bring human life into accord with Nature’s intelligence, will be the focus of this course.

At the same time, we will look at green buildings whose design allows them to draw on flows of renewable energy in their immediate environment. We will consider their beauty, functionality and affordability, examining the materials used to accomplish these goals. The physics of energy and light flow will be reviewed, along with state-of-the-art methods for designing energy-efficient buildings and “tunneling through the cost barrier.” Laboratory sessions will center on methods and software for modeling building performance. (4 units)

SL 420 Green Energy

This course will redefine the understanding of energy, heat and power by studying state-of-the-art technologies that can generate and use energy from sources that are both renewable and sustainable. The inefficiency of our modern industrial society will be closely examined, with students learning to identify entropy in a system and find huge opportunities for improvements. Classroom sessions will also include films, slide presentations, demonstrations, presentations by students, and outside guest speakers. Besides lectures, films and demonstrations, the course will include field trips, a lab, and a project that will give students a chance to apply these technologies. Many classes will take place in a building that is powered by renewable energy, with students monitoring and operating the building energy systems. Each day, the design principles of systems based on renewable energy will be related to the natural laws that structure our own awareness and govern the universe efficiently and automatically. (4 units)

SL 425 Green Entrepreneurship

Starting a new business requires enthusiasm and creativity, careful planning and broad consideration. This course will teach you how to launch a business that is both economically lucrative and environmentally sound. With the guidance of experienced business faculty, you will create a business plan that will further an aspect of sustainable living. Projects may range from implementing new solar energy technologies to building greenhouses or reducing global poverty. Whatever angle you choose, you will gain a thorough understanding of how to turn idealistic visions into profitable realities. (4 units)

SL 445 Environmental Law

From local regulations about water quality to global initiatives like the Kyoto Accord, the law is an important tool for regulating our use of the environment. During this course, students will become familiar with international treaties and protocols on global warming, pollution and endangered species. The class will also study the key features of American environmental law including the Clean Air and Water Act, the Environmental Protection Act and other current policies and regulations. Perhaps most importantly, students will understand the lawmaking process as a way to use the legal system to bring about positive change and build sustainable communities. (4 units)
SL 450 Environmental Planning and Landscaping
A built environment should have the stability, diversity, resilience and beauty of a natural ecosystem. This course will consider all the factors that go into a sustainable landscape, including energy, economy, transportation, mass culture and food production systems. In addition, students will study the role of useful plants and structures that harvest and store rainwater, as well as the usefulness and beauty of perennial food crops. As a final project, student groups will design an eco-village for one hundred inhabitants. (4 units)

CHEMISTRY COURSES

CHEM 201 General Chemistry I
Topics include atomic and molecular structure, reaction mechanisms, thermochemistry, and the physical behavior of gases, with special emphasis on problem solving and quantitative reasoning. (Lab fee: $5) (4 units) Prerequisite: MATH 161 or permission from the instructor

CHEM 202 General Chemistry II
Topics include covalent bonding, liquids and solids, equilibria, kinetics, and acids and bases. (Lab fee: $5) (3 or 4 units) Prerequisite: CHEM 201

CHEM 203 General Chemistry III
Topics include coordination compounds, the chemistry of oxidation-reduction reactions, chemical thermodynamics, nuclear chemistry, chemistry of selected elements, and atmospheric chemistry. (Lab fee: $5) (4 units) Prerequisite: CHEM 202

CHEM 204 Quantitative Analysis
This course introduces students to the methods of quantifying different atomic and molecular species. Students gain experience in modern instrumental methods for analysis as well as basic gravimetric and titrimetric methods. (Lab fee: $5) (4 units) Prerequisite: CHEM 203

CHEM 311 Organic Chemistry I Prerequisite: CHEM 203
CHEM 312 Organic Chemistry II Prerequisite: CHEM 311
CHEM 313 Organic Chemistry III Prerequisite: CHEM 312
These courses, which are taught with an emphasis on unifying principles, explore both structure and reaction mechanisms of organic compounds. Topics include bonding, spectroscopy, structure, physical properties, synthesis, and reactions of the major classes of organic compounds, including biomolecules. (Lab fee: $5 per course) (3 or 4 units)

CHEM 350 General Biochemistry
This course focuses on the basic chemical structures and chemical transformations that take place in living systems. Topics include the structure, kinetics, and regulation of enzymes; bioenergetics; and intermediary metabolism. (4 units) Prerequisites: CHEM 313 and BIO 260

CHEM 351 Experimental Biochemistry
This laboratory course introduces students to the techniques used to identify, fractionate, and characterize the constituents of biochemical systems. Students gain experience in spectrophotometry, chromatography, electrophoresis, centrifugation, and the use of radioisotopes in the analysis of biological materials. (Lab fee: $5) (3 or 4 units) Prerequisite: CHEM 350

CHEM 352 Advanced Biochemistry
This course explores the most interesting and rapidly developing areas in biochemistry today. Areas which may be included are bioenergetics, membrane transport, protein targeting, and free radical biochemistry. (3 or 4 units) Prerequisite: CHEM 350

CHEM 380 Laboratory Research in Chemistry
This course gives students hands-on experience in chemical research. With prior approval of the laboratory supervisor, students take part in the ongoing research activities of the neurochemistry, inorganic chemistry, molecular biology, or other chemistry research laboratories. (Lab fee: $5) (2–4 units) Prerequisite: consent of the instructor

CHEM 499 Directed Study
(variable units) Prerequisite: consent of the Department faculty
INTRODUCTION

Familiarity with the literary classics is the hallmark of an educated person, one who is steeped in the philosophy, history, and currents of thinking that have shaped the deepest values of world cultures. The great leaders, thinkers, artists, and teachers in all countries have been centered in their literary heritage. Walt Whitman said that the wealth of a nation is in its evolving language. With the shifting trends of contemporary society toward multicultural values, there is an even more urgent need for appreciation and understanding of different cultures through literary study. Going beyond individual cultures to the earth itself, language in a program founded upon Consciousness, the deepest value of human existence, is a force for creating balance and harmony in the environment.

Literature also has its practical side. It has long been the foundation for careers in teaching, law, political science, library science, environmental advocacy, editing and publishing, creative and professional writing, the arts, and arts management as well as any career calling for training in thinking, writing, speaking, research, or management skills. Literature students excel in critical thinking. In reading, writing, and textual analysis students learn to see the relationship between the parts and the whole, and they learn how thoughts are unfolded in the most powerful sequences.

Within our literature courses students learn a variety of pragmatic and creative skills beyond literary studies. These include writing for media, public speaking, and the development of presentation skills as well as other hands-on exercises such as writing screenplays and the performance of scenes from classic and modern plays.

SPECIAL FEATURES

The Literature Program

- Courses are taught as historical surveys, genre surveys, or seminars in British literature, American literature, and world classics in translation.
- Multicultural works and gender-balanced texts are integrated into the curriculum.
- A course entitled “Literature and the Environment” is available as an elective in literature.
- Students learn the historical forces that produce a literary text and the conventions that make a genre a successful art form. And they are offered regular opportunities to explore literary genres by writing in-depth analysis in poetry, fiction, drama, nonfiction, and film.
- Students are introduced to literary terms and forms in a two-course series, Literature I and Literature II. These courses provide a deeper view of literature—a quantum view—identifying literature as an expression of Natural Law and the creative intelligence in Nature. Reading is seen as a self-referral process taking us back to what is most deep and most natural in ourselves.
- To develop writing skills, students write at least one paper in every class.
- All literature majors take at least three advanced writing courses (12 units). Students may also elect to take their B.A. degree in Literature with an Emphasis in Writing by taking five writing courses.
- A speaking and performance component in every class ensures poise, flow, and coherence in speaking skills.
- A senior course in literary theory provides a foundation in the philosophical, historical, and theoretical context of literary theory with practice in applying theories to literary texts.
• Opportunities are available for qualified students to apply their knowledge in an internship program.

The Undergraduate Writing Program

• In professional fields today, fluency in writing is a highly valued skill. Students have the opportunity to develop both the art and craft of writing through first-year writing courses, required of all undergraduates, and advanced writing electives. In these courses, students also gain experience analyzing and responding to written texts as they develop their own abilities to write clearly and gracefully.

• Diagnostic writing assessments are given to all students entering the bachelor’s and associate’s degree programs. Based on individual results, students enroll in the writing course or courses necessary for them to satisfy the University’s First-Year Writing Requirement.

• In their first year, students have the opportunity to spend from four to eight weeks focusing full time on their writing.

• Once students have completed the University’s First-Year Writing Requirement, advanced writing courses are available individually as electives; students may also choose to complete the minor concentration in writing. In addition, students are encouraged to elect courses in their majors that emphasize writing within the discipline.

• The writing minor focuses on nonfiction, although courses in other areas are offered. It is appropriate for students in all majors who want to communicate effectively, informing and uplifting readers through the written word. Completion of five courses is sufficient for the minor, but students may take more advanced writing courses if they wish to do so.

Students must also take the following required literature courses
LIT 350 American Literature I
LIT 351 American Literature II
1 Novels course
1 Drama course
3 British Historical Surveys (Renaissance, Medieval, 18th Century, Romanticism, Victorian, Modern British Lit)
Plus a mixture of literature and writing courses adding up to 60 units overall

Rotating University courses may be substituted for one of the above if the subject matter includes literature, writing, or historical study of world culture. Departmental approval is required prior to the start of a Rotating University course.

Internship (LIT 498) in an approved setting counts as one literature elective toward the major. It may be repeated for general graduation requirements but may not be repeated to fulfill the requirements of the literature major.

The Minor in Literature

To graduate with a minor in literature, students must successfully complete any 5 literature (LIT) courses, or choose 3 to 4 literature courses and 1 or 2 advanced writing (WTG) courses adding up to a combined 5 literature and writing courses.

Rotating University courses may be substituted for one of the above if the subject matter includes literature, writing, or historical study of world culture. Departmental approval is required prior to the start of a Rotating University course.

The Minor in Writing

To graduate with a minor in writing, students must successfully complete any 5 advanced writing (WTG) courses at the 300-level or higher spread over 2 or 3 years as offered. Writing courses (WTG) are listed under “Course Descriptions” at the end of this section.

A Rotating University course may be substituted for one writing course, such as travel writing. Departmental approval is required prior to the start of a Rotating University course.

LITERATURE COURSES

NOTE: Courses designated 4 units may be offered for 3 units during shorter blocks.
LIT 114 Self-Discovery in Literature
The acts of reading and writing are examples of both self-discovery and Self Discovery. It is common to think of writing as an act of self-expression, just as all art forms are self-expressive. But writers also express more than they even realize, and much of what is written consciously or unconsciously conveys the deeper characteristics of one’s Being, including the unmanifest, unbounded, unwritten, absolute Self. What is often overlooked, however, is that reading is also a creative act. When we read we are absorbing much of the consciousness of the author, but we are also altering it in many ways as well. We cannot help but do so. Each reading is subjective. It conforms to our own individual ways of seeing the world. In this sense, the act of reading is the act of finding one’s self in everything we read. This course also functions as Self Discovery because it is our design to locate the absolute, unchanging Self in the midst of the literary texts’ ever-changing diversity. In this course we will sample all of the literary genres: the novel (excerpts), the short story, the literary essay, the lyric poem, the film, and a Shakespearean play. We will learn some literary terms, do some creative writing, and discover some different strategies for reading and writing. (2 units) (Distribution Area: Arts)

LIT 205 Literature I
This course focuses on poetry and the role of consciousness in interpreting poetry as well as developing a critical vocabulary for explication. Literature I presents the department’s specialty in unifying various literary approaches and trends. Students read about contemporary insights into the study of literature which support this direction. (4 units)

LIT 206 Literature II
In this course students study the structure of fiction, examining the short story and novel. Students learn literary terminology, critical analysis, and the art of explication. This course is essential for helping students develop the literary essay, the backbone of written assignments in the major. (4 units)

LIT 207 Heritage of World Literature
Students study principles from the Science of Creative Intelligence and Maharishi Vedic Science to illuminate the subtleties of language and thought in the great world masterpieces. Selections may include parts of the Bible and other scriptures, Homer’s Odyssey, Dante’s Divine Comedy, and Goethe’s Faust, as well as Eastern treasures like the Bhagavad-Gita and Ramayana. (4 units)

LIT 325 Classics of Greece and Rome
The literature of ancient Greece and Rome is the source of the Western literary tradition; the Greeks in particular recognized the value of literature as an expression of society’s shared ideals and as a means of developing social unity and harmony. Works studied may include Homer’s Iliad and Odyssey, Greek lyric poetry, Aeschylus’ Oresteia, Sophocles’ Theban plays, Euripides’ Bacchae, selections from Plato and Aristotle, Cicero’s “Dream of Scipio,” Virgil’s Aeneid, and selections from Plotinus. (4 units)

LIT 330 Literature of the Middle Ages
This course opens with the heroic ideals of the Anglo-Saxons, runs through the birth and popularization of courtly love, and ends at the doorstep of the European Renaissance. Intrinsically involved with the quest motif, this course charts the adventures of Beowulf, Sir Gavain and the Green Knight, the pilgrims in Chaucer’s Canterbury Tales, and the various Arthurian knights in pursuit of love, spirituality, and the Holy Grail. (4 units)

LIT 335 Shakespeare I
LIT 336 Shakespeare II
“All the world’s a stage.” Shakespearean drama explores every nook and cranny of this stage-play world—every human emotion and desire, every social role, every paradox and paradigm—in language so powerful and characters so brilliantly realized they live forever in the hearts and minds of those who study them. Historical and philosophical background, themes, structure, language, and characterization are examined in a selection of Shakespeare’s most profound plays, including: The Taming of the Shrew, A Midsummer Night’s Dream, Much Ado about Nothing, Twelfth Night, Measure for Measure, The Winter’s Tale, The Tempest, King Richard II, King Henry IV and V, Romeo and Juliet, Antony and Cleopatra, Macbeth, Hamlet, and King Lear. (4 units each)

LIT 339 English Renaissance Literature
Renaissance writers searched for fundamental principles and poetic structures that could produce an order in accord with natural law, allowing the full development of human life. This course covers the most influential continental author, Petrarch, as well as the major English authors of the sixteenth and early seventeenth centuries: Wyatt, Spenser, Sidney, Donne, Shakespeare’s sonnets, Ben Jonson, Herbert, Marvell, and Milton. (4 units)

LIT 341 18th-Century Literature
This course covers the literature of the Augustan Age—the Restoration and early eighteenth century—as well as the Age of Johnson and the rise of the novel. It considers the new emphasis on the value of feelings seen in the novel, and considers such
authors as Dryden, Pope, Swift, Defoe, Richardson, Fielding, Burney, Samuel Johnson, and Austen. (4 units)

LIT 342 The 18th-Century Novel
Diverse social, economic, and political forces during the eighteenth century helped forge a new literary genre: The novel was born. This course examines the rise of the novel through three different activities: (1) reading novels from Defoe to Austen, (2) studying the cultural milieu of the eighteenth century, and (3) formulating a theory of the novel and its applications. Exercises include a freewriting journal, daily “thinking pieces,” an oral report on a major eighteenth-century trend, an analytical paper, and a final exam. (4 units)

LIT 344 The English Romantic Movement
This course examines the nineteenth-century Romantic movement and its escape from the limitations of eighteenth-century rationalism through an emphasis on the infinite, creative power of the imagination, the exalted view of poetry and the poet, sympathy with social renewal, a distrust of industrialization, and the rediscovery of myth. Writers studied include Blake, Wordsworth, Coleridge, Keats, Shelley, and Byron. (4 units)

LIT 347 Victorian Literature
Victorian literary style reflects the transition from the Romantic to the modern period through its blending of profound subjective experience with the awakened consciousness of rapid social change. Students read works by Charlotte Bronte, Carlyle, Tennyson, Arnold, Dickens, George Eliot, the Brownings, Hopkins, and others. (4 units)

LIT 348 20th-Century British Literature
Modern British writers in all genres, exploring the previously uncharted dimensions of inner life, developed new literary techniques to express the deeper realities of consciousness at the basis of thought and human behavior. Combating the forces of urbanization, isolation, industrialization, and the decline of religion, such modern novelists as Conrad, Lawrence, Forster, Woolf, and Joyce, and such poets as Yeats, Eliot, Thomas, and Auden, took refuge in the transcendent—the source of knowledge, meaning, and happiness. (4 units)

LIT 350 American Literature I
LIT 351 American Literature II
American authors explore the goals of an ideal society and the full development of the individual. These courses provide students with a historical foundation for advanced courses in American literature that specialize in the genres and authors of the two major literary periods. (4 units each)

LIT 350: the Puritan period (Anne Bradstreet, Jonathan Edwards), Native-American and African-American Literature, the Rational Enlightenment (Franklin, Paine, Jefferson), Romanticism (Bryant, Hawthorne), and Transcendentalism (Emerson and Thoreau), Whitman, and Dickinson.

LIT 351: the Realist and Naturalist movements (Twain, James, Crane, Norris), the local colorists (Jewett, Freeman), the modern period of fiction (Fitzgerald, Hemingway, Faulkner, Steinbeck, and Cather), and modern poetry (Frost, Eliot, Williams, Stevens, Moore, Hughes, and others).

LIT 353 Early American Literature
This seminar in early American literature alternates with LIT 350. It focuses on various topics of the period, such as the Transcendentalists or early American narrative. (4 units)

LIT 354 Modern American Literature
This seminar alternates with LIT 351 and focuses on more specialized topics in modern American literature. (4 units)

LIT 355 Asian Literature
In this course, students widen their understanding of the streams of creative expression beyond what has been produced in Western cultures. Works to be explored may include the Ramayana, Bhagavad-Gita, Shakuntala, the Confucian Odes, T’ang poetry, Monkey, The Dream of the Red Chamber, Japanese poetry, The Tale of Genji, and Noh drama. (4 units)

LIT 360 Poetry
This course focuses on contemporary poetry with the aim of awakening students’ awareness to the stylistic techniques that express different visions of wholeness. Poets to be read may include Theodore Roethke, Denise Levertov, James Wright, Gary Snyder, Robert Bly, Richard Wilbur, W.D. Snodgrass, Elizabeth Bishop, A.R. Ammons, Galway Kinnell, and W.S. Merwin. (4 units)

LIT 361 The Novel
The “modern” novel was born in the eighteenth century, but many long narratives—including epics, fables, romances, and picaresque tales—appeared much earlier. As the epic tradition lost vitality, the novel became literature’s torch bearer, the primary mode of depicting life. This course examines the history, techniques, and forms of the novel, from social realism to metafiction. (4 units)
LIT 363 (FA 226) The Art of Film
This course emphasizes film technique, such as the use of lighting, camera angles, and mise en scène. It takes the student out of the realm of the Saturday night “movie” and into the world of film as a major art form. Our primary texts in this course will be the films themselves, including the masterworks of some of the world’s finest directors. Course requirements include the writing of film reviews, and the analysis of a key scene from a film we will have viewed. ($15 lab fee) [Same as FA 226] (4 units)

LIT 364 (FA 287) Screenwriting I
In this course, students will create a real screenplay—not just a writing exercise—and will write with the full intention of producing a saleable script. They will study a number of models, including films, film clips, and a published screenplay. Before beginning the actual screenplay, students will compose a premise, a structure-step assignment, and a scene outline. After these initial steps, they will write a screenplay and take a final exam. [Same as FA 287] (4 units)

LIT 365 (FA 227) History of Film
This film survey traces the evolution of primarily American and European cinema from the early days of Griffith and Eisenstein through the twentieth and into the twenty-first century. It includes examples of history-shaping movements such as Soviet formalism, German expressionism, French realism, Italian Neo-realism, film noir, surrealism, and nouvelle vague. As in LIT 363, we will watch a selection of some of the finest “world masterpieces on film.” ($15 lab fee) [Same as FA 227] (4 units)

LIT 367 Modern European Drama
In the late nineteenth century, drama began to emerge from a century of mediocrity led by such dramatic innovators as Ibsen, Strindberg, Chekhov, Shaw, Pirandello, and Brecht who pioneered a dramatic revolution that expressed itself in such forms as realism, naturalism, impressionism, expressionism, surrealism, and the theater of the absurd. All of these figures and the movements they spawned will be examined in this course along with the work of other influential dramatists such as Eliot, Yeats, and Shaffer. (4 units)

LIT 368 American Drama
Beginning with the Provincetown Players and the Little Theater movement of the twenties, this course explores the drama from Eugene O’Neill—America’s foremost dramatist—through postmodernism and contemporary drama. This course also emphasizes the drama of Tennessee Williams and Arthur Miller. Among the other figures studied are Glaspell, Hellman, Henley, Kopit, Mamet, and Albee. (4 units)

LIT 369 Comparative Drama
All western drama begins with the Greeks, specifically the four titans of Athens’ Golden Age: Aeschylus, Sophocles, Euripides, and Aristophanes. In the festivals to Dionysus these four dramatists developed the theatrical concepts of Tragedy and Comedy and helped shape our present view of humanity. In America, some 24 centuries later, Eugene O’Neill gave shape to the modern theater. Much of what O’Neill created was strongly influenced by the Greeks. The American drama that followed O’Neill, Tennessee Williams, Arthur Miller, Beth Henley and others, labored directly under O’Neill’s influence and indirectly under that of the Greek masters. (4 units)

LIT 370 Literature and the Environment
This course uses the Norton Book of Nature Writing, an anthology of short selections about nature from the nineteenth and twentieth centuries, to study the philosophical, historical, and cultural approaches to the environment we have inherited in American culture. Students read a nature novel of their choice and report to the class. The writing is analyzed for effective ways of presenting the environment. Students write their own nature journals to find what Mitchell Thomashow calls “ecological identity.” The connection between language and nature is investigated, leading to a final project using language skills to help the environment. (4 units)

LIT 380 Seminar on Special Topics
Periodically, seminars on special topics are offered by visiting professors or by resident faculty. (2–4 units—may be repeated)

LIT 490 Literary Theory and Critical Practice
This course consolidates and expands what students have learned about critical theory from earlier courses. Students study methods of literary research and write a seminar paper. Topics include New Criticism, Structuralism, Deconstruction, Archetypal Theory, and Maharishi’s commentaries on language, literature, and poetry. (4 units)

LIT 496 Professional Web Page and Portfolio
Students prepare an electronic portfolio based upon their work throughout the major. The purpose of the portfolio is to unify a student’s work and bring it into holistic perspective. The goal of the portfolio is the production of an impressive document the student can give to a prospective employer or graduate school
administrator. The portfolio will involve revision of previous work, the creation of a general introduction, written abstracts that introduce various writing genres, and in a few cases the creation of new work. During the course, students will develop their portfolios on their own Web pages, launched from a CD Rom disk. (4 units)

LIT 497 Senior Thesis
This course is a directed study open only to advanced students in the literature major. It includes an academic paper and presentation based upon the student’s accumulated work. Exceptional students applying for this course will take it in the final module of their major. The Senior Thesis is a 4 to 8 unit course in which the student develops a previous paper, or creates a new one, on a literary topic from the perspective of Maharishi Vedic Science. Students who take this course do not take LIT 496 Literature Portfolio. (4 to 8 units) Prerequisite: permission from the Department Chair

LIT 498 Internship in Literature
This course for literature majors is designed to apply skills gained in the major: writing, speaking, research, analysis, and synthesis. Advanced students are placed in a work situation with community professionals to acquire greater applied knowledge in their field of interest. A defined project is set up and evaluated by both a workplace supervisor and a faculty advisor (4–12 units) Prerequisite: consent of the Department faculty

LIT 499 Directed Study
(variable units) Prerequisite: consent of the Department faculty

WRITING COURSES

WTG 191 College Composition I
This course presents students with the challenge of reconciling seemingly opposite perspectives—writing as an ongoing process of discovery and writing as the creation of a finished work. Students develop greater facility with the writing process and strengthen foundational skills. Connections between reading and writing are fostered as students read and discuss a narrative text. (4 units)

WTG 192 College Composition II
This course develops students’ abilities to use language for different purposes, subjects, and audiences, focusing on both exposition and persuasion within the academic context. Students read and discuss published works that reflect the variety of thinking and writing across the disciplines. (4 units) Prerequisite: WTG 191 or appropriate assessment

WTG 199 Directed Study
(variable units) Prerequisite: consent of the Department faculty

WTG 301 Nonfiction Workshop I
WTG 302 Nonfiction Workshop II
In these courses, students read selections of nonfiction prose and examine advanced composition techniques that contribute to clarity, effectiveness, and grace in writing. Students write short nonfiction projects including essays, interviews, reviews, and other forms. (4 units each) Prerequisite for each: WTG 192

WTG 310 Poetry Writing
Students in this course read and study model poems to learn the technical building blocks of poetry: imagery, sound effects, rhyme, rhythm, and form. They then write their own poems in either free verse or such traditional forms as the sonnet, blank verse, ballad, and villanelle. (4 units) Prerequisite: WTG 192

WTG 312 Persuasive Argument
This course focuses on writing that reasons its way to a logical conclusion. Using an adapted Toulmin model, students examine classic and current arguments in various subject areas as they write their own persuasive pieces. Topics emphasized include induction and deduction, consideration of audience, evaluation of assumptions, counterarguments and fallacious reasoning, and the role of emotions in persuasion. (4 units) Prerequisite: WTG 192

WTG 313 Fiction Writing I
WTG 314 Fiction Writing II
Students in these courses read short stories and examine the technical aspects of fiction, such as plot, characterization, dialogue, point-of-view, and description. They practice methods of composition to foster accurate observation, concise and clear expression, and the effortless flow of creativity. (4 units) Prerequisite for each: WTG 192

WTG 315 Literary Nonfiction
In this course, students examine the potential of nonfiction to elicit an aesthetic response in the reader as well as to communicate clearly. They examine works by authors such as Peter
Mathiessen and John McPhee, which combine techniques of journalism and fiction, as they write their own literary nonfiction. (4 units) Prerequisite: WTG 192

WTG 320 The Personal Essay
Students read and discuss a range of essayists from the informal tradition—early practitioners to contemporary writers—as they practice the art and craft of composing their own personal essays. Writing in this form, students develop their idiosyncratic voices and discover the power of such short prose to transform localized topics into visions of wholeness. (4 units) Prerequisite: WTG 192

WTG 332 Prose Style
Students acquaint themselves with a wide range of writing styles as they investigate their own style of writing. Examining the works of various authors, students fine-tune their understanding of the mechanics of English expression and develop their ability to use sentence structure, diction, and punctuation as the sophisticated tools they have the potential to be. (4 units) Prerequisite: WTG 192

WTG 340 Writers on Writing
The nonfiction writing projects in this course are designed to help students appreciate themselves as real writers. Students examine what distinguished writers—from journalists to novelists, from children’s authors to essayists—have to say about their craft, gaining both inspiration and direction on technical matters that can be put into practice in their own work. (4 units) Prerequisite: WTG 192

WTG 342 Writing for Young People
This course focuses on the special considerations of writing for young people (preschool to young adult levels). Students read outstanding works of children’s literature, investigating techniques of writing for this population, and produce their own original works. (4 units) Prerequisite: WTG 192

WTG 350 Advanced Creative Writing
Maharishi says, “writers start with what the eyes see, the ears hear and the hands feel, then travel into space and time to explore the beyond.” Following this prescription, this course offers advanced students the opportunity to deepen their knowledge and hone their writing skills by focusing on a body of their own work in poetry or fiction. Students will acquaint themselves with authors, write personal responses to books and articles, attend readings, and watch videotaped interviews of famous writers. Course participants will also workshop their manuscripts with their classmates and make an extensive presentation of their work. The final outcome will be a submission for publication. (4 units)

WTG 355 Writing in the Professions
In this course, students investigate the role that writing plays in professional areas of interest. Students become familiar with what is considered “good writing” in different disciplines, both by reading professional examples and considering prescriptive guidelines. Writing projects are designed to develop the students’ abilities to communicate clearly and effectively in individual interest areas. (4 units) Prerequisite: WTG 192

WTG 399 Directed Study
(variable units) Prerequisite: consent of the Department faculty

WTG 410 Travel Writing
From Mark Twain to John Steinbeck, some of the world’s most admired writers have found inspiration in the topic of travel. In this course students read selections from The Best American Travel Writing 2000, edited by contemporary travel writer and humorist Bill Bryson. By analyzing the work of great travel writers and through in-class writing workshops, students become familiar with techniques of travel writing and learn to apply them in their own writing. Highlighting the course are three day-trips to nearby tourist destinations, during which students learn to research articles and record their personal observations in a travel journal. The course culminates in the writing of a personal travel essay for publication. How to write a query letter and the top online markets for travel articles will also be covered. (4 units)
FACULTY

• Robert Schneider, M.D., Dean and Chair, Professor of Maharishi Vedic Medicine and Physiology, Director of the Institute for Natural Medicine and Prevention
• David Sands, M.D., Associate Dean for Academic and Clinical Affairs, Associate Professor of Maharishi Vedic Medicine and Physiology, Director of Clinical Training
• Sanford I. Nidich, Ed.D., Associate Dean for Research, Professor of Maharishi Vedic Medicine and Psychology, Associate Director of the Institute for Natural Medicine and Prevention
• Mousumi Dey, M.B.B.S., D.P.H., M.Phil., Assistant Professor of Maharishi Vedic Medicine and Physiology
• Amparo Castillo-Richmond, M.D., Assistant Professor of Maharishi Vedic Medicine
• Diane Prather-Huff, O.D., Assistant Research Professor, Institute for Natural Medicine and Prevention
• Jan Ramberg, Ph.D., Assistant Professor of Maharishi Vedic Medicine
• Paul Morehead, M.A., Instructor of Maharishi Vedic Medicine
• Liis Mattik, M.A., Instructor of Maharishi Vedic Medicine
• Maxwell Rainforth, Ph.D., Assistant Professor of Maharishi Vedic Medicine and Statistics
• John Salerno, Ph.D., Research Assistant Professor, Assistant Director of the Institute for Natural Medicine and Prevention
• David Orme-Johnson, Ph.D., Adjunct Research Professor, Institute for Natural Medicine and Prevention
• Julie Stephens, Ph.D., Adjunct Research Assistant Professor, Institute for Natural Medicine and Prevention
• Ken Walton, Ph.D., Senior Fellow, the Institute for Natural Medicine and Prevention
• Barry Charles, M.D., Clinical Professor of Maharishi Vedic Medicine, President of Maharishi Colleges of Vedic Medicine
• Hari Sharma, M.D., Clinical Professor of Maharishi Vedic Medicine
• Stuart Rothenberg, M.D., Clinical Associate Professor of Maharishi Vedic Medicine
• Veronica Butler, M.D., Clinical Associate Professor of Maharishi Vedic Medicine
INTRODUCTION

Maharishi Vedic Medicine considers all the elements that constitute health. Its approach is natural and holistic, taking into account all the influences on health—ranging from the inner intelligence of the body, to the physiology, mind, behavior, environment, and the total managing intelligence of the universe.

Maharishi Vedic Medicine approaches the problems of prevention and cure from the source of health, the most fundamental field of intelligence in Nature—known in modern science as the Unified Field of Natural Law—which governs every level of existence, from subatomic particles, to the human body, to the galactic universe. It locates the lack of integration between the individual’s physiology and this underlying field of intelligence as the cause of disorder and disease.

All of the specific programs, procedures, and technologies used in Maharishi Vedic Medicine help restore this integration to create a balanced state of health—perfect synchrony between the functioning of every individual cell and the holistic functioning of the whole body, and between the holistic intelligence of the body and cosmic intelligence, which is managing the orderly evolution of the universe without a problem.

The effectiveness of Maharishi Vedic Medicine lies in its ability to enliven the total intelligence of Natural Law within the physiology, and thereby integrate and balance the functioning of all aspects of body and mind. “Natural Law” refers to the integrated, balanced, and holistic functioning of all the Laws of Nature that are responsible for the whole manifest universe. As a result of enlivening Natural Law in the physiology, thought, behavior, and actions automatically become more integrated and balanced, and spontaneously move in accord with Natural Law—this is the basis of good health. Over 600 scientific research studies, conducted at 200 universities and research institutes in 30 countries, document the benefits of the programs of Maharishi Vedic Medicine for improved physiological, psychological, social, and environmental health.

Everywhere in the world today medical experts and the general public are recognizing the limitations and hazards of the prevailing system of health care. This means that the knowledge and approaches being taught in conventional medical education are incomplete and even dangerous. Clear evidence of this incomplete knowledge is in the report that 100 million Americans, or nearly 40% of the population, suffer from chronic diseases.

From the perspective of Maharishi Vedic Medicine, any failures of modern medicine result from one fundamental weakness—an isolated approach to knowledge and practice which fails to attend to the balance and integration of the physiology as a whole. Knowledge of Maharishi Vedic Medicine’s holistic approach is urgently needed by every health professional in the world. The revival of this ancient knowledge of Maharishi Vedic Medicine opens the opportunity for a more advanced, complete, and authentic approach to medical education and health care. This advanced education in the Vedic health care system is now available at the university level for the first time at Maharishi University of Management College of Maharishi Vedic Medicine.

Students at the College of Maharishi Vedic Medicine train to approach health concerns utilizing natural principles that support health. They learn preventive and therapeutic modalities to enliven the body’s inner intelligence and thereby enhance the body’s own immune and self-repair mechanisms. They gain competence in maintaining the perfect, integrated health of the individual and society as a whole.

Programs Offered

The College of Maharishi Vedic Medicine offers an undergraduate program leading to the Bachelor of Arts degree and a doctoral program leading to a Doctor of Philosophy in Physiology, with specialization in Maharishi Vedic Medicine.

Graduates of the bachelor’s program may qualify to serve as consultants to physicians. Graduates of the doctoral program may qualify as consultants to physicians and/or may function as independent natural health care practitioners as permitted by state and federal laws.

The College of Maharishi Vedic Medicine also offers a Technical Training Program leading to a certificate in the Maharishi Rejuvenation program. This program is for students who wish to work as technicians at Maharishi Medical Centers or Centers for Chronic Disorders around the world.

SPECIAL FEATURES

The College of Maharishi Vedic Medicine offers uniquely effective knowledge for prevention and treatment of disease. This comprehensive range of knowledge, not available in any other system of medical education, includes:

- Study of the precise relationship between the structures and functions of human physiology, and the fundamental structures of Natural Law contained in Veda and the Vedic Literature—and the application of this knowledge to maintain health;
• Pulse diagnosis—to detect balance and imbalance in the body by feeling the pulse and restoring balance before disease arises, through diet, daily and seasonal routines, and herbal preparations;
• The medical benefits of using Vedic sounds (Maharishi Vedic Vibration TechnologySM and Maharishi Gandharva VedaSM music), vibrations of the field of pure intelligence—to restore balance to the physiology;
• Vedic Architecture (Maharishi Sthapatya VedaSM design) principles for designing and constructing buildings according to Natural Law—for the health, happiness, and good fortune of the inhabitants;
• Vedic system of predicting the future of one’s health and other aspects of life (Maharishi Vedic AstrologySM program), understanding the relationship between human physiology and its cosmic counterparts (the far-distant environment)—to avert potential problems and promote good health;
• Maharishi Transcendental MeditationSM and TM-SidhiSM programs, including Yogic Flying—to give direct experience of the total field of intelligence and to promote deep rest, release of stress, and integrated functioning of body and mind; and
• Practice of this technology in large groups to purify collective consciousness and to bring life into harmony with Natural Law, the basis of perfect health for society.
• All the courses in the Maharishi Vedic Medicine program include Sanskrit. Students are sequentially introduced to proper pronunciation and reading of classical Sanskrit, the language of the Vedic Literature. After mastering correct pronunciation and the ability to read Devanagari text, students conduct research in the Vedic Literature by reading entire texts. Students study, in Maharishi Vedic ScienceSM, Maharishi’s explanation of the role of Sanskrit as the language of Nature. Reading Sanskrit is included in the final exam, after the completion of the first two years of Maharishi Vedic Medicine.
• With faculty approval, third or fourth year Maharishi Vedic Medicine students may take the first three blocks of the graduate program as electives. These courses are in-depth reviews of the Foundation Program material. They integrate all of the theoretical foundations and apply them in more advanced clinical practice. This will give students more clinical practice and a taste of graduate level work. If they pass these courses with high marks, they may be able to waive them if they join the Ph.D. in Physiology with Specialization in Maharishi Vedic Medicine.

DEPARTMENTAL REQUIREMENTS

Entrance Requirements for the Bachelor of Arts Degree in Maharishi Vedic Medicine

Applicants should demonstrate preparation for college-level study as evidenced by previous academic performance, the SAT or ACT exam, letters of recommendation, and an interview with a representative of the College. Other factors considered in the application process include the applicant’s degree of commitment to the educational goals of Maharishi University of Management College of Maharishi Vedic Medicine, enthusiasm for learning, and dedication to developing perfect health and a disease-free society.

Graduation Requirements for the Bachelor of Arts Degree in Maharishi Vedic Medicine

To graduate with a B.A. in Maharishi Vedic Medicine, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.” NOTE: NLS 100, The Science of Creative Intelligence, and the Natural Law Seminar requirements are waived for students in this major.) Students are evaluated at the end of each semester of the MVM Core Curriculum for mastery of the material and at the end of the first year for eligibility to continue into the second year of the program. The requirements for the first two years of the major are listed below. The program for the third and fourth years will be structured on an individual basis with the College faculty.

84 units of required MVM Core Curriculum
• MVM 241 Vedic Anatomy and Vedic Physiology I
• MVM 242 Vedic Anatomy and Vedic Physiology II
• MVM 243 Vedic Anatomy and Vedic Physiology III
• MVM 244 Vedic Anatomy and Vedic Physiology IV
• MVM 245 Vedic Anatomy and Vedic Physiology V
• MVM 260 Maharishi Vedic Medicine I
• MVM 261 Maharishi Vedic Medicine II
• MVM 262 Maharishi Vedic Medicine III
• MVM 263 Maharishi Vedic Medicine IV
• MVM 300 Vedic Prevention I
• MVM 311 Fieldwork
• MVM 312 Clinical Fieldwork
• MVM 340 Maharishi Vedic Approach to HealthSM: Anatomy & Physiology I
• MVM 341 Maharishi Vedic Approach to Health: Anatomy & Physiology II
• MVM 342 Maharishi Vedic Approach to Health: Anatomy and Physiology III
• MVM 343 Maharishi Vedic Approach to Health: Anatomy and Physiology IV
• MVM 344 Fundamentals of Creating Wholeness I
• MVM 345 Fundamentals of Creating Wholeness II
• MVM 346 Fundamentals of Creating Wholeness III
• MVM 347 Fundamentals of Creating Wholeness IV
• MVM 348 Fundamentals of Creating Wholeness V
• MVM 370 Training as a Health Education Consultant
• MVM 380 Research Methods
• MVS 221 Sanskrit I
• MVS 222 Sanskrit II
• MVS 340 Maharishi Gandharva Veda Music
• FOR 431 Higher States of Consciousness (2 units)
• FOR 445 Discovery of Veda in Human Physiology (2 units)

Remaining units for graduation (76) are to be taken from the following list, in consultation with the College faculty:

• MVM 201–204 Fundamental Skills I–IV (2 units per course)
• BIO 250 Plant Science
• BIO 260 Living Systems
• BIO 261 Zoology
• BIO 317 Ecology
• BIO 322 Plant Taxonomy
• BIO 355 Evolutionary Biology
• BIO 367 Molecular Biology
• CHEM 201–203 General Chemistry I–III
• CHEM 311–313 Organic Chemistry I–III
• CHEM 350 General Biochemistry
• ED 308 Computer-Based Instruction
• ED 320 Educational Psychology
• ESS 210 Physiology of Fitness
• ESS 215 Foundations of Exercise and Sport Science
• ESS 220 Sport Medicine
• ESS 325 Leadership in Adventure Sports
• ESS 398 Research
• MGT 205 Maharishi’s Absolute Theory of Administration
• PHYS 150 The Physical World and SCI
• MVS 300 Source Documents in MVS I
• MVS 310 TM Program Lecture and Checker Training
• MVS 490 TM Program Teacher Training—Part I
• MVS 491 TM Program Teacher Training—Part II
• MVS 492 TM Program Fieldwork Internship

NOTE: By the end of the first year in the program, a student’s suitability for continuation in the program is evaluated by the College faculty.

Entrance Requirements for the Ph.D. Degree in Physiology with Specialization in Maharishi Vedic Medicine

Entering graduate students must have a bachelor’s degree and demonstrate scholastic ability to function successfully at the graduate level as evidenced by previous academic performance, the Graduate Record Examination (GRE), letters of recommendation, an essay, and an interview with a representative of the College.

Applicants to the graduate program must successfully complete the two-year undergraduate Foundations in Maharishi Vedic Medicine curriculum with a grade of “B” or above in each course to gain a basis for graduate study in the field. This curriculum consists of the following undergraduate courses:

84 units of required MVM Core Curriculum:
• MVM 241 Vedic Anatomy and Vedic Physiology I
• MVM 242 Vedic Anatomy and Vedic Physiology II
• MVM 243 Vedic Anatomy and Vedic Physiology III
• MVM 260 Maharishi Vedic Medicine I
• MVM 261 Maharishi Vedic Medicine II
• MVM 262 Maharishi Vedic Medicine III
• MVM 263 Maharishi Vedic Medicine IV
• MVM 300 Vedic Prevention I
• MVM 311 Fieldwork
• MVM 312 Clinical Fieldwork
• MVM 340 Maharishi Vedic Approach to Health: Anatomy & Physiology I
• MVM 341 Maharishi Vedic Approach to Health: Anatomy & Physiology II
• MVM 344 Fundamentals of Creating Wholeness I
• MVM 345 Fundamentals of Creating Wholeness II
• MVM 346 Fundamentals of Creating Wholeness III
• MVM 347 Fundamentals of Creating Wholeness IV
• MVM 348 Fundamentals of Creating Wholeness V
• MVM 370 Training as a Health Education Consultant
• MVM 380 Research Methods
• MVS 221 Sanskrit I
• FOR 431 Higher States of Consciousness (2 units)
• FOR 445 Discovery of Veda in Human Physiology (2 units)

NOTE: After completing the two-year MVM Core Curriculum, a student’s suitability for continuation in the program is evaluated by the College faculty.
Graduation Requirements for the Ph.D. Degree in Physiology with Specialization in Maharishi Vedic Medicine

To graduate with a Ph.D. in Physiology with Specialization in Maharishi Vedic Medicine, students must successfully complete all general requirements for the doctoral degree. (Please refer to “Degree Requirements” in “Academic Policies.”) Program requirements are as follows:

68 units of required MVM Advanced Curriculum courses:
- PHYSI 506 Review of Maharishi Vedic Medicine I
- PHYSI 507 Review of Maharishi Vedic Medicine II
- PHYSI 509 Neurophysiology I and Corresponding Vedic Neurophysiology
- PHYSI 510 Neurophysiology II and Corresponding Vedic Neurophysiology
- PHYSI 511 Neurophysiology III and Corresponding Vedic Neurophysiology
- PHYSI 512 Molecular Cell Biology and Corresponding Vedic Physiology I
- PHYSI 513 Molecular Cell Biology and Corresponding Vedic Physiology II
- PHYSI 514 Modern and Vedic Embryology
- PHYSI 515 Discovery of Veda in Human Physiology
- PHYSI 516 Vedic Devata in Human Physiology
- PHYSI 523 Respiratory System and Corresponding Vedic System
- PHYSI 524 Fluid and Lymphatic Systems and Corresponding Vedic Systems
- PHYSI 527 Digestive System and Corresponding Vedic System
- PHYSI 528 Musculo-Skeletal Systems and Corresponding Vedic Systems
- PHYSI 529 Circulatory System and Corresponding Vedic System
- PHYSI 532 Reproductive System and Urinary System and Corresponding Vedic Systems
- PHYSI 533 Colon and Corresponding Vedic System; Integumentary System and Corresponding Vedic System
- PHYSI 534 Endocrine System and Corresponding Vedic System
- PHYSI 536 Geriatrics and Corresponding Vedic Topics
- PHYSI 559 Dhanur-Veda and Sthapatya Veda in Human Physiology
- PHYSI 560 Vedic Prevention I
- PHYSI 561 Vedic Prevention II
- PHYSI 562 Vedic Prevention III
- PHYSI 575 Teaching Practicum
- PHYSI 580 Research Methods and Analysis of Experiments
- PHYSI 587 Fieldwork I—Clinical Applications of Maharishi Vedic Medicine
- PHYSI 590 Preparation for Comprehensive Examination
- PHYSI 700 Specialization in Maharishi Vedic Medicine Dissertation Proposal Preparation
- PHYSI 701 Dissertation Research

A written comprehensive examination at the completion of the required Maharishi Vedic Medicine Advanced Physiology Curriculum courses (PHYSI 590)

Immediately following completion of the MVM advanced curriculum, students prepare for a comprehensive examination. This examination represents an opportunity for students to consolidate and integrate knowledge gained in the core curriculum. (Students who successfully complete the written comprehensive examination are advanced to Ph.D. candidate status.)

GRADUATE PROGRAM SPECIAL FEATURES

- Throughout the graduate program, students gain practical experience in research and clinical skills.
- Students work with research faculty learning the practical application of research skills to clinical or laboratory research on any of the approaches of Maharishi Vedic Medicine, their applications and their effects. Students perform data collection and statistical analysis, literature review, and scientific writing as they contribute to the research endeavor.
- Students engaging in research must have mathematical skills appropriate to the level of research undertaken. Students work alongside the staff of the College of Maharishi Vedic Medicine Health Center (or other such facility) learning the management skills required for clinic operations including client and staff scheduling, purchasing and inventory, and basic record-keeping.
- Dissertation proposal (PHYSI 700) prepared and submitted for approval (When the proposal is accepted, the student is advanced to Ph.D. researcher status.)
- Original research and dissertation preparation (PHYSI 701)
- An oral defense of the dissertation
- Acceptance of dissertation by the Graduate School and the Library
Entrance Requirements for the Technical Training Certificate in the Maharishi Rejuvenation Program

Before entering the Technical Training Certificate in the Maharishi Rejuvenation™ program, students must complete all application procedures. (Please refer to “Technical Training Admissions” in “Admissions.”) In addition to these procedures, students must also complete the Maharishi Rejuvenation program technician questionnaire and interview with both a faculty member and a technician trainer.

Graduation Requirements for the Technical Training Certificate in the Maharishi Rejuvenation Program

To graduate with the Technical Training Certificate in the Maharishi Rejuvenation program, students must successfully complete the general requirements for a Certificate. (Please refer to “Degree Requirements” in “Academic Policies.”) In addition, students must complete the following courses by gaining mastery of the required skills and by displaying to the trainers and program directors behavior commensurate with the professional status of a Maharishi Rejuvenation program technician.

Required courses:
- MVM 001 Fundamental Skills I
- MVM 002 Fundamental Skills II
- MVM 003 Fundamental Skills III
- MVM 004 Fundamental Skills IV

NOTE: Graduates of this program may receive 8 units (2 units per course) of academic credit toward a bachelor’s degree.

COURSE DESCRIPTIONS

NOTE: 4-unit courses may be offered for 3 units during shorter blocks.

Undergraduate Courses

MVM 130 Maharishi Consciousness-Based Approach to Health

Maharishi Consciousness-Based Approach to Health is the aspect of the ancient Vedic Tradition that provides the knowledge of perfect balance and harmonious functioning in human physiology. This knowledge is validated by a growing body of scientific research and is essential for relieving mankind of the burden of disease.
know how to prevent diseases before they arise. (4 units each) (Only MVM 300 is required for graduation.)

MVM 309 Preparation for Fieldwork
Students prepare for fieldwork through training in 1) client education, 2) introductory lectures, and 3) clinic administration. Students practice explaining the recommendations given to a client by a consultant in Maharishi Vedic Medicine in mock client education sessions. Students also prepare introductory lectures on Maharishi Vedic Medicine and learn the fundamentals of clinic operations, particularly how to satisfy the needs and questions of clinic clients. (variable units—may be repeated. Not required for graduation)

MVM 310 Maharishi Sthapatya Veda Design
Students study Maharishi Sthapatya Veda design, which is the most ancient system of country, town, village, and home planning, in accord with Natural Law—connecting individual life with cosmic life, individual intelligence with cosmic intelligence—to create ideal living conditions and better health. The course explains the three principles of Maharishi Sthapatya Veda design: right direction, right placement of rooms and right proportion and other principles of Vastu-Vidya—knowledge of the site. (4 units)

MVM 311 Fieldwork
Students work in Maharishi Medical Centers or Centers for Chronic Disorders in various aspects of clinic operations including such areas as guest education, guest services, and clinic marketing. (4 units—may be repeated) Prerequisites: MVM 309 and consent of the College faculty and the Academic Standards Committee

MVM 312 Clinical Fieldwork
Students learn to conduct consultations and give recommendations under the direct supervision of the College faculty. They operate a students’ clinic and gain experience with all aspects of clinic operations: administration, consultations, patient education, and publicity. (Course has variable units—7 units required for graduation.)

MVM 340 Maharishi Vedic Approach to Health: Anatomy and Physiology I
MVM 341 Maharishi Vedic Approach to Health: Anatomy and Physiology II
MVM 342 Maharishi Vedic Approach to Health: Anatomy and Physiology III
MVM 343 Maharishi Vedic Approach to Health: Anatomy and Physiology IV
The knowledge of physiology follows the expression of the body’s inner intelligence sequentially from the subtlest levels (mind, senses, and the (doshas), through the tissues (dhatus) and channels of biological communication and transportation (srotas). These courses explore how these concepts from Maharishi Vedic Approach to Health are related to modern knowledge of anatomy and physiology. (4 units each)

MVM 344 Fundamentals of Creating Wholeness I
MVM 345 Fundamentals of Creating Wholeness II
MVM 346 Fundamentals of Creating Wholeness III
MVM 347 Fundamentals of Creating Wholeness IV
MVM 348 Fundamentals of Creating Wholeness V
These courses unfold the understanding of how imbalance arises and manifests as signs and symptoms of disease. The sequence begins with the five traditional means of understanding imbalance (pancha nidan), then considers how the balance of doshas is disturbed (dosha vaishamya), and then how the tissues are affected (dhatu vaishamya). Topics include causative factors, pathophysiology, and signs and symptoms.

Students begin their training as consultants in Maharishi Vedic Medicine by learning to access the pulse of others for signs of balance and imbalance. They learn to connect the causes of imbalance with their manifestations and the means of restoring balance.

Students learn how to use Maharishi Ayur-Veda™ herbal food supplements, diet, and behavior to restore balance for many conditions that afflict people. They explore the means of determining the proper course for restoring balance in these different conditions on a system-by-system basis. (4 units each)

MVM 360 Preparation and Procedures to Promote Perfect Health
Students study the practical application of Maharishi Vedic Medicine, including the recommendation of herbal food supplements. (4 units)

MVM 370 Training as a Health Education Consultant
Students receive further training with simulated and real patients and supervised clinical experience in the College of Maharishi Vedic Medicine clinic. (4 units)

MVM 380 Research Methods
This course introduces the knowledge and objective skills indispensable to scientific research. Topics include the scientific method, logical and practical considerations in experimental design and data acquisition, procedures for conducting literature reviews, selection of research topics, research ethics, and practical research aids such as computer-assisted data analysis. Particular emphasis is placed on clinical research design, including
proper choice of control subjects and the prevention of bias in subject selection. (variable units)

MVM 410 Fundamental Business Principles for Maharishi Vedic Medicine Consultants
In this course students learn the fundamental business principles and techniques necessary for consultants in Maharishi Vedic Medicine who either plan to start their own independent practice or who want to apply their skills in an already established practice. Topics in this course include entrepreneurship, marketing, law, financial management, and accounting as they apply to the field of alternative medicine. (4 units)

MVM 499 Directed Study
(variable units) Prerequisite: consent of the College faculty

GRADUATE COURSES

PHYSI 506 Review of Maharishi Vedic Medicine I
PHYSI 507 Review of Maharishi Vedic Medicine II
PHYSI 508 Review of Maharishi Vedic Medicine III
These courses present the key purposes and fundamentals of Maharishi Vedic Medicine, including how the inner intelligence of the body expresses in all aspects of physiology. The enlivement of the inner intelligence through Maharishi’s technologies of consciousness is the basis of health. These courses give more in-depth understanding of modern and Vedic physiology (Dosha, Dhatu, Agni, Srotas, Mala), review and extension of Pulse Diagnosis, modern and Vedic pathophysiology (Samprapti), physiological systems (Srotas), causative factors (Nidan), diagnosis, and treatment of general disorders. Vedotpatti is the Vedic understanding of human embryology and development. This science develops the theme that the human physiology is an expression of Ved, Total Knowledge of Natural Law. Vedotpatti describes all the elements that contribute to the nature of the embryo—maternal, paternal, environmental, and individual. (PHYSI 508 not required for graduation for Ph.D. degree) (4 units)

PHYSI 509 Neurophysiology I and Corresponding Vedic Neurophysiology
PHYSI 510 Neurophysiology II and Corresponding Vedic Neurophysiology
PHYSI 511 Neurophysiology III and Corresponding Vedic Neurophysiology
The nervous system occupies a central role in the human physiology as the master organizer and switchboard. These courses cover (1) neuroanatomy, (2) membrane biophysics, (3) synaptic transmission, (4) information processing and the integrated activity of the nervous system, (5) EEG patterns and the practice of Transcendental Meditation and TM-Sidhi programs, (6) current theories of perception, learning and memory, (7) the relation between the structure and functioning of the nervous system and Veda and Vedic Literature, (8) Vedic definition of mind (Manovigyan), its qualities and functions, the senses, intellect, and relationship to Self (Atma), and (9) mental disorder (Manas Rog), cause, diagnosis, and balancing procedures. (4 units)

PHYSI 512 Molecular Cell Biology and Corresponding Vedic Physiology I
PHYSI 513 Molecular Cell Biology and Corresponding Vedic Physiology II
PHYSI 514 Modern and Vedic Embryology
These courses present the fundamentals of Molecular Cell Biology along with corresponding Vedic principles of the finer mechanisms of creation. Molecular Cell Biology components include: (1) cellular structure (organelles, cell membrane and nucleus), (2) cell function and mechanics, (3) gene replication & expression, (4) protein structure, and biosynthesis of nutrients, and (5) an overview of embryology.

The Vedic knowledge of the microscopic value of physiology includes: (1) the process of creation from consciousness (inner intelligence) to all the fundamental building blocks of creation, which is given in Samkhya, and (2) the Vedic structure of matter (Dravya), quality (Gun), and function (Karma) at all levels of health. Every structure in the physiology has very specific qualities which are necessary for it to accomplish its unique function. (4 units)

PHYSI 515 Discovery of Veda in Human Physiology: Vedic Sound
All 40 aspects of Veda and the Vedic Literature have been found to correspond in structure and function to the human anatomy and physiology. This exact correspondence provides the basis for highly effective and practical technologies that make use of the Vedic Sounds to restore balance to any part of the physiology. This course will provide the profound theoretical basis for all future courses in Maharishi Vedic Medicine. (4 units)

PHYSI 516 Vedic Devata in the Human Physiology
Every individual is Cosmic. Total Natural Law is available in everyone and every physiology. This course will examine how all aspects of Natural Law, described as Devata in the Vedic Literature, are also available within human physiology. Maharishi explains that the Vedic Devata are the various aspects of
Natural Law that organize the entire universe and maintain its perfect order. The course will investigate Professor Tony Nader’s discovery of the correspondence between these aspects of Natural Law and their physiological counterparts. (4 units)

PHYSI 523 Respiratory System and Corresponding Vedic System
This course studies the cellular and gross structure of the respiratory system, functions, and basic modern pathophysiology. Vedic Physiology includes organs, root (Mula) and functions of Pranavaha Srotas (life breath carrying channels). Prana is the first expression of reverberating consciousness in the physiology. The vibratory quality of consciousness knowing itself gives rise to the in-and-out quality of the life breath, known as prana. Causative factors, diagnosis, and restorative procedures for the dysfunctions of Pranavaha Srotas are studied. (4 units)

PHYSI 524 Fluid and Lymphatic Systems and Corresponding Vedic System
Human physiology is mostly fluid and water. Fluid balance, electrolyte balance, and pH are critical factors in maintaining homeostasis. The Udakvah Srotas (water carrying channels) are a major part of the physiology and have an impact on every cell and every pore, as well as general circulation. Udak ultimately represents the flowing and cohesive values of the inner intelligence as it expands to all parts of the body, and the cohesive quality which binds the physiology together. Causative factors, diagnosis, and restorative methods from the Vedic tradition are given. (4 units)

PHYSI 527 Digestive System and Corresponding Vedic System
The digestive tract supplies nourishment to every cell and tissue. It is called the great (Maha) Srota in Maharishi Vedic Medicine. It will be studied from both modern and Vedic perspectives. Modern themes include gross and tissue structure, autonomic and hormonal control, and basic pathophysiology. Vedic themes include imbibing intelligence from the environment and from food, maintaining the tissues (dhatus), functions of the organs and root (Mula) of the system, causative factors of imbalance, and methods of diagnosis and restoration. (4 units)

PHYSI 528 Musculo-Skeletal Systems and Corresponding Vedic Systems
The principal structural and functional systems of the body, musculo-skeletal, bone marrow, and adipose tissue, will be studied in this course. Their correspondences to the Mams, Med, Asthi, and Majja Vah Srotas will be examined. The Vedic perspective is that these tissues provide structure, strength, basis of movement, help immunity and many other functions. Imbalances in these tissues, signs and symptoms, and therapeutic modalities will be given. (4 units)

PHYSI 529 Circulatory System and Corresponding Vedic System
Cardiovascular health is among the greatest concerns of modern times. This course presents the structure and function of the heart, vasculature, pacemaker cells, and systemic circulation. Basic modern pathology is described. The Rasavah and Raktavah Srotas of Maharishi Vedic Medicine are the plasma and blood carrying channels which continuously flow throughout the physiology to bring the nutrient fluid (ras) and the strengthening component of blood (rakt) to every tissue and organ. Imbalances, causative factors, diagnosis and therapeutic procedures are considered in detail. (4 units)

PHYSI 532 Reproductive System and Urinary System and Corresponding Vedic Systems
The reproductive system will be studied from the modern and Vedic perspective. In Maharishi Vedic Medicine, the final tissue to be metabolized is Shukra, the reproductive fluid. Balance in this tissue gives rise to strength, stamina, vitality, and ultimately Ojas, the essence of the tissues, which is responsible for immunity, luster and longevity. The pathophysiology, diagnosis and restoration of this very important system will be presented. (4 units)

PHYSI 533 Colon and Corresponding Vedic System; Integumentary System and Corresponding Vedic System
The physiology, which is a replica of the total intelligence of Ved, has vital and powerful mechanisms for maintaining balance at every level. In a natural system when we imbibe intelligence from the environment, there will be elements which nourish, and elements which are not required. Proper elimination of unneeded products of digestion are essential to health. The proper formation and elimination of Malas (waste products) promote balance, lightness, and maintenance of the tissues. Swedovah Srotas (sweat carrying channels) help purify as well as cool the physiology. Modern and Vedic physiology and pathophysiology are presented, and Maharishi Vedic Medicine procedures for diagnosis and restoration are given. (4 units)

PHYSI 534 Endocrine System and Corresponding Vedic System
The inner intelligence precisely controls the body’s systems through the powerful endocrine system. These microchemical messengers, guided by the higher brain nuclei, govern and intricately regulate virtually every autonomic function in response...
to an ever-changing environment. This course presents modern and Vedic perspectives on endocrine system structure, function, and dysfunction. Vedic diagnosis and treatments are emphasized.

A second theme is the nature and etiopathology of disorders of Vat. Vat is considered the “King Dosha” because it is the controlling principle of physiology that is most easily vitiated, through improper diet and routine. Vat (movement, communication, circulation) vitiation is responsible for 80 disorders, while Pitt (transformation, heat, metabolism) is responsible for 40 disorders, and Kaph (structure, binding, cohesion) only 20. Restorative procedures for Vat disorders will be studied. (4 units)

PHYSI 536 Geriatrics and Corresponding Vedic Topics
Modern and Vedic mechanisms for aging, and Vedic procedures for reversal of aging will be studied.

The Vedic procedure for strengthening tissues to disallow recurrence of disease and promoting longevity is called Rasayana therapy. Rasayana is that which nourishes every part of the body. Rasayana also promotes Ojas, which is the most subtle and important element in the physiology for maintaining balanced function, longevity, immunity and bliss. Means for promoting Ojas and specific Rasayana therapies for specific organs and systems will be presented. (4 units)

PHYSI 559 Dhanur-Veda and Sthapatya Veda in Human Physiology
Modern and Vedic understanding of immunity will be studied in light of the correspondence between the Dhanur-Veda and the immune system. Dhanur-Veda is the Invincible quality of Natural Law. Sthapatya Veda Establishes the wholeness of the anatomy—which is more than the sum of the parts. (4 units)

PHYSI 560 Vedic Prevention I
PHYSI 561 Vedic Prevention II
PHYSI 562 Vedic Prevention III
In these courses, students begin study of Maharishi Jyotish, the Vedic Science of transformation and prediction. The Maharishi Jyotish program reveals the relationship of individual life with cosmic life, and provides means for predicting trends and preventing unfavorable circumstances. Students learn to assess an individual’s type and time for potential illnesses and thus know how to prevent diseases before they arise. (4 units each) (Only MVM 300 is required for graduation.)

PHYSI 575 Teaching Practicum
In this course, students mentor with faculty to prepare curric-ular materials and present topics in scheduled Maharishi Vedic Medicine courses. Students develop practical skills in lecture organization and delivery, development of main points and unifying principles, and student-centered learning activities within the context of Consciousness-BasedSM education. (Variable units—may be repeated)

PHYSI 580 Research Methods and Analysis of Experiments
This course emphasizes clinical trials research design, especially in the area of natural medicine. Topics include: conducting literature searches, hypothesis testing, subject selection criteria, measurement, data analysis, sample size estimate, and the design of experimental, cross-sectional, and case-control studies. Examples from natural medicine clinical trials are mainly used throughout the course. Students will also be introduced to the scientific conduct required for undertaking research on human subjects, including informed consent and privacy issues. (4 units)

PHYSI 587 Fieldwork I—Clinical Applications of Maharishi Vedic Medicine
In this course, students learn how to apply the knowledge they have gained. They receive training with real patients and are supervised in providing clinical consultations in doctors’ offices and/or Maharishi Medical Centers, in offering patient education, and in presenting public lectures. (Variable units—may be repeated)

PHYSI 588 Fieldwork II—Clinical Applications of Maharishi Vedic Medicine
In this course, students work closely with a physician seeing patients and making recommendations to promote balance for each individual. Students may teach short Health Education courses. Admission to this course depends on demonstration of sufficient mastery of concepts and skills presented in the preceding courses. (4 units)

PHYSI 590 Preparation for Comprehensive Examination
This course provides the time necessary to study and integrate the course material in preparation for the written comprehensive examination. (4 units—may be repeated) Prerequisites: satisfactory completion of the required graduate courses

PHYSI 700 Specialization in Maharishi Vedic Medicine Dissertation Proposal Preparation
Having successfully completed the courses required for the doctoral degree, the doctoral candidate prepares a proposal
for a doctoral dissertation and selects a dissertation advisor and committee. The dissertation proposal must be formally presented to the candidate’s doctoral committee. (4 units—may be repeated) Prerequisite: doctoral candidate status and permission of the dissertation advisor

PHYSI 701 Dissertation Research

Students conduct original research and prepare their dissertations during their third and fourth years in the program. Any changes in dissertation topic must be approved by the dissertation committee. (variable units—may be repeated until the dissertation is completed) Prerequisite: approval of the dissertation proposal by the dissertation committee

CERTIFICATE COURSES

MVM 001 Fundamental Skills I
MVM 002 Fundamental Skills II Prerequisite: MVM 001
MVM 003 Fundamental Skills III Prerequisite: MVM 002
MVM 004 Fundamental Skills IV Prerequisite: MVM 003

This series of courses trains students in the technical knowledge of Maharishi Ayur-Veda. The Maharishi Vedic Approach to Health technician administers the Maharishi Rejuvenation program—the procedures that have been shown to raise a person’s level of health and vitality. Students receive detailed instruction in the performance of specific massages, heat therapies, and elimination procedures, and then practice in the laboratory (clinic) under the supervision of master technicians to perfect these skills, to develop the highest standards of professional behavior, and to supervise other technicians. Students also learn how to prepare the materials used in treatments, and how to maintain the cleanliness and safe operation of a Maharishi Rejuvenation program clinic. (4 units each)

MVM 005 Advanced Skills

Extended instruction and practice within the clinic provide the student with the opportunity to perfect additional skills in the Maharishi Rejuvenation program and to master additional procedures beyond those included in the Fundamental Skills courses. (variable units) Prerequisite: consent of the College faculty

MVM 098 Laboratory

This course is for students who desire or require additional experience under the supervision of faculty to meet the graduation requirements for the Maharishi Vedic Approach to Health technician certification. (4 units—may be repeated) Prerequisite: consent of the College faculty

MVM 099 Directed Study

(variable units) Prerequisite: consent of the College faculty
INTRODUCTION

The College of Maharishi Vedic Science provides the systematic knowledge and experience of pure consciousness, Atma, the Self of every individual. This unmanifest self-referral field of pure intelligence at the basis of the thinking process is the source of all thought and action. As explained in the Veda and Vedic Literature, and confirmed by modern physics, it is the non-changing field of order and intelligence at the basis of the universe—the Unified Field of Natural Law. Maharishi Vedic Science explains how this underlying unity unfolds into the diversity of life, and offers practical technologies for reconnecting each individual to the source of order and harmony within. The study of Maharishi Vedic Science develops the full potential of the knower and lays the foundation for complete knowledge of any discipline, while it fosters evolution to higher states of consciousness and progressive and fulfilling action in life.

The College of MVS meets its responsibilities in three ways:

1) Through the Department of Maharishi Vedic Science, it offers doctoral, master’s, and bachelor’s degrees and certificates in the Maharishi Vedic Science program and an undergraduate minor in MVS.

2) Through the Department for the Development of Consciousness, it offers instruction in the Transcendental Meditation and TM-Sidhi programs, the Research in Consciousness courses taken by all students, and Special MVS studies program.

3) The College also directly oversees the following courses and programs:

- The Natural Law Seminar program taken by most bachelor’s degree students. (Please refer to the earlier section of this name for course descriptions.)
- The Forest Academy program courses taken by all students each semester, focusing deeply on Maharishi Vedic Science.
- The Research in Consciousness courses or group practice of the Transcendental Meditation and TM-Sidhi programs which all students take.

Research in Consciousness (RC) Courses: Regular practice of the Maharishi Transcendental Meditation and TM-Sidhi programs represents ongoing laboratory work in Maharishi Vedic Science and fulfills a primary goal of the University—development of consciousness, on both the individual and collective levels. All students take part in these courses twice daily. Specific grading policies for these courses are provided by the Registrar. (These courses are described more fully at the end of this section.)
Special Maharishi Vedic Science Studies Program: This program allows students to earn credit through course work taken here in Fairfield and in other parts of the world. The purpose of this program is to recognize the academic accomplishments of students who complete the unique courses in Maharishi Vedic Science, described in “Special MVS Studies Courses” under “Course Descriptions” for the College of MVS. Non-degree-seeking students who later decide to seek a degree, may apply courses successfully completed under the Special MVS Studies program toward degree requirements, with the approval of the student’s academic advisor. For details about the policies and application procedures for these courses, please contact the Registrar’s Office.

Instruction in the Transcendental Meditation Technique and the TM-Sidhi Program: The Department offers instruction in the practice of the Transcendental Meditation technique (offered separately or as part of the Science of Creative Intelligence courses NLS 100, FOR 100, and FOR 500) and the TM-Sidhi program (MVS 330), available for additional cost beyond the regular tuition charges.

Department of Maharishi Vedic Science

Maharishi Vedic Science is the systematic study, experience, and development of the full range of life, both individual and cosmic. Its principles and technologies are based on the direct experience and understanding of the most vital element in creation—the unbounded field of consciousness that is the inner intelligence at the basis of every individual and the entire universe.

Maharishi Vedic Science provides the practices that allow each student to experience directly the infinite and timeless value of their own Self, unbounded pure consciousness, the simplest form of human awareness. These practices include the Transcendental Meditation and TM-Sidhi programs, including Yogic Flying. The experience of the limitless field of pure consciousness, or pure intelligence, being the core of one’s own self changes one’s life positively and dramatically.

Maharishi Vedic Science also provides complete knowledge and experience of the sequential evolution of the Veda and Vedic Literature, all the Laws of Nature. It clarifies how these abstract impulses of pure consciousness evolve into their concrete expressions in the human physiology and the cosmic physiology, the universe. Because the Veda and Vedic Literature are the Laws of Nature that govern both human and cosmic life, they are what Maharishi refers to as the blueprint of creation.

Raja Raam, Professor Tony Nader, M.D., Ph.D., under Maharishi’s guidance, has discovered that human physiology and cosmic physiology are the exact replica of the structures and functions expressed by the Veda and Vedic Literature. Maharishi Vedic Science makes use of this discovery to unfold the full creative genius, the total cosmic potential of each student.

Two other Vedic technologies used in our programs for developing the full potential of every student are listening to the Veda and Vedic Literature and reading the Vedic Literature in Sanskrit. Maharishi explains these technologies align the student’s intelligence with the natural flow of Nature’s intelligence.

In time, because of the student’s developing consciousness, the creativity, energy, and intelligence governing the universe become accessible to and usable by the student.

Students effortlessly grow in their natural ability to think and behave from that unbounded level of pure consciousness; they grow in intelligence, creativity, and power, but equally in compassion, kindness, and moral character.

The immense practical value and benefits of being able to live life from its infinite potential are indescribable, literally anything becomes possible, even the creation of ideal societies and permanent world peace.

Programs Offered

The Department of Maharishi Vedic Science offers the following programs:

• B.A. in Maharishi Vedic Science
• B.A. in Maharishi Vedic Science—For students who are already teachers of the Transcendental Meditation program
• Minor in Maharishi Vedic Science
• Minor in Development of Consciousness
• Specialization in Consciousness for both undergraduate and graduate students
• M.A. in Maharishi Vedic Science—A one-year program when taken in the standard class schedule (meeting six days per week, 4 weeks per 4-unit course) or a 3-plus year program when taken on the nonstandard schedule—meeting several times a week, 12 weeks per 3–4 unit course. All programs require a minimum of ten 4-unit courses regardless of which schedule. Not all courses are offered in every schedule. With additional course work students can add a concentration to the above master’s degrees in one of the following areas:
 1) Concentration in Maharishi Vedic Technologies
 2) Concentration in Educational Applications of Maharishi Vedic Science
 3) Concentration in Advanced Maharishi Vedic Science
 4) Concentration in Maharishi Vedic Medicine
 5) Concentration in Reading the Vedic Literature
6) Concentration in Research in Consciousness
7) Concentration in Maharishi Gandharva Veda Music

• M.A. in Maharishi Vedic Science with an Emphasis in Research in Consciousness—A three-year degree program which includes nine 3-unit courses taken along with three years of the Creating Coherence Program. Each class is 12 weeks long, meeting two afternoons per week. This is a terminal degree and does not prepare students for the doctoral program.

• Ph.D. in Maharishi Vedic Science—A four-to-six year program if core curriculum is taken in the standard class schedule (meeting 6 days per week), a seven-plus year program if core curriculum is taken in a nonstandard format.

• Certificate in Research in Consciousness—A twenty-four-month program for practitioners of the Maharishi Transcendental Meditation and TM-Sidhi programs.

• Certificate Programs in Maharishi Gandharva Veda Music (one-or-two year program, morning classes only)

SPECIAL FEATURES

• Focus on an ideal daily routine with emphasis on experiencing the Unified Field of Natural Law in daily research in consciousness.

• Extensive exposure to and work with over 30 years of taped lectures by Maharishi on his Science of Creative Intelligence and Vedic Science.

• Study of the full range of all aspects of the Vedic Literature, including Veda, Vedanga, Upanga, Upaveda, Itihasa, Purana, Smritis, Brahmana and Pratishakhya.

• Experience with pronunciation of and the ability to read the Sanskrit language, which Maharishi has described as the language of Nature.

• Exploration of the scientific character of Maharishi’s knowledge, including the basic research methods of modern science and its objective verification of Maharishi Vedic Science.

• Investigation of the principal theoretical research tools of Maharishi Vedic Science and the Science of Creative Intelligence including Unified Field and Richo Akshare Charts.

• Knowledge recently brought to light by Maharishi, including the Maharishi Master Management program and the discovery of Veda and Vedic Literature in human physiology.

• Development of communication skills in Maharishi Science of Creative Intelligence and Vedic Science with emphasis on writing and speaking skills.

Music: Maharishi Gandharva Veda Music

• Maharishi Gandharva VedaSM music is one of the technologies of Maharishi Vedic Science for bringing total brain functioning, health and harmony to the individual; and creating coherence, progress and peace in society. This classical music of the ancient Vedic civilization has been revived in its purity and reconnected to its roots in the Veda and Vedic Literature.

• Playing and listening to Maharishi Gandharva Veda music harmonizes the cycles and rhythms of the physiology. In conjunction with the Transcendental Meditation and TM-Sidhi programs, Maharishi Gandharva Veda music cultivates wholeness, happiness, and bliss in the awareness.

• Maharishi Gandharva Veda music instruction comes from some of India’s finest musicians of sitar, bamboo flute, tabla, and voice. These visiting artists-in-residence come to the University regularly to teach and perform.

• This system trains musicians and composers to create enjoyable music whose goal is to elevate the performer, the audience, and the environment, and bring them into harmony.

• The subtle frequencies and ornamentations that characterize this music significantly sharpen ear-training perception and enhance creative expression.

• Students appreciate the closest tolerances for pitch and rhythmic accuracy of any musical tradition.

• Students learn simple procedures from a prevention-oriented system of natural health care that enhance mind-body coordination and reduce nervousness in musical performance.

The Bachelor of Arts Degree

• Coverage of all the major themes of the Maharishi Vedic Science program including higher states of consciousness, collective consciousness, and Sanskrit and reading the Vedic Literature.

• Study of source documents in Maharishi Vedic Science with emphasis on The Science of Being and Art of Living.

• Development of writing and speaking skills as students apply Maharishi Vedic Science to the areas of health, education, management, and rehabilitation.

• A two-month integrative writing exercise unifying the various themes of the student’s academic experience at Maharishi University of Management.

The Master of Arts Degree

• In-depth study of Maharishi’s commentary on the first six chapters of the Bhagavad-Gita.

• Systematic study of the key themes of Maharishi Vedic Science,
including self-referral, the mechanics of creation, Maharishi’s *Apaurusheya Bhashya* of Rik Veda, the Veda and Vedic Literature, and Veda in human physiology, from books and videotaped lectures of Maharishi Mahesh Yogi.

- Introduction to the Maharishi Jyotish™ program, Maharishi Sthapatya Veda™ design, and Maharishi Gandharva Veda music.
- Development of the ability to write a proposal to apply Maharishi Vedic Science for the solution of a current problem in society.

The Ph.D. Degree

- Specialization in Vedic Literature, Applications of Maharishi Vedic Science, Modern Science and Maharishi Vedic Science, or Higher States of Consciousness.
- In-depth study of the foundational principles of Maharishi Vedic Science including the discovery of Veda and Vedic Literature in human physiology.
- Learn to read Sanskrit, the language of the self-interacting dynamics of consciousness expressed in the Vedic Literature.

DEPARTMENTAL REQUIREMENTS

Entrance Requirements for the Bachelor of Arts Degree in Maharishi Vedic Science

Before entering the major in Maharishi Vedic Science, students must complete the Natural Law Seminar requirement, as well as the undergraduate writing, mathematics, and computing proficiency requirements.

Graduation Requirements for the Bachelor of Arts Degree in Maharishi Vedic Science

To graduate with a B.A. in Maharishi Vedic Science, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the major are 60 units of course work as listed below.

28–32 units of required courses:
- MVS 202 Higher States of Consciousness
- MVS 206 Collective Consciousness (2–4 units)
- MVS 208 Maharishi Vedic Science I
- MVS 210 Maharishi Vedic Science II
- MVS 300 Source Documents in MVS, or equivalent
- MVS 308 Scientific Research (2–4 units)

- MVS 390 Senior Project I: Seminar and Comprehensive Exam
- MVS 391 Senior Project II: Research

*plus 8 units of elective courses in MVS

*plus one of the following options (20 units each):

Option 1
- MVS 310 *TM* Program Lecture and Checker Training (8–12 units)
- MVS 312 Fieldwork I
- MVS 313 Fieldwork II

Option 2—Reading Vedic Literature
- MVS 222 Sanskrit II
- MVS 223 Sanskrit III
- MVS 321 Readings in Vedic Literature I
- MVS 322 Readings in Vedic Literature II
- MVS 323 Readings in Vedic Literature III

**Option 3—*TM* Program Teacher Training*
- MVS 490 *TM* Program Teacher Training—Part I
- MVS 491 *TM* Program Teacher Training—Part II
- MVS 492 *TM* Program Fieldwork Internship*

**Option 4—*TM* Program Research Internship*
- MVS 497 *TM* Program Research Internship (24 units)

Option 5—Maharishi Gandharva Veda Music

*20 units of required Maharishi Gandharva Veda music courses taken within one year, including

*at least 8 units selected from:
- MVS 340 Maharishi Gandharva Veda Musicianship
- MVS 342 Health Benefits of Maharishi Gandharva Veda Music
- MVS 343 Maharishi Vedic Science, Sound, and Music
- MVS 344 Ear Training

*plus, at least plus 8 units selected from:
- MVS 345 Melody in Maharishi Gandharva Veda Music
- MVS 346 Rhythm in Maharishi Gandharva Veda Music
- MVS 347 Time Theory in Maharishi Gandharva Veda Music

plus a recital and final thesis

Choosing Option 3 or 4 does not guarantee that students will be admitted into MVS 490, MVS 491, MVS 492, or MVS 497. Students who are not accepted into these courses are encouraged to take one of the other options, especially Option 2—Reading Vedic Literature. In addition, MVS 490 and MVS 491 may be offered in varying time periods, therefore their units may need to be adjusted.

NOTE: MVS 490, MVS 491, and MVS 492 are generally taken after all other course work for the bachelor’s degree has been completed.
Entrance Requirements for the Bachelor of Arts Degree in Maharishi Vedic Science—for Teachers of the Transcendental Meditation Technique

The B.A. in MVS—for Teachers of the Transcendental Meditation technique has been designed for those teachers of the Transcendental Meditation technique who have extended experience in teaching this technique prior to enrolling in the B.A. in MVS major. To enter this program students must be eligible for 24 units of credit for either Teaching Internship (MVS 493) or Research Internship (MVS 497).

Graduation Requirements for the Bachelor of Arts Degree in Maharishi Vedic Science—for Teachers of the Transcendental Meditation Technique

To graduate with a B.A. in MVS—for Teachers of the Transcendental Meditation technique, students must successfully complete all requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) The requirements for the major are 72 units of course work as follows:

24 units from the following:
- MVS 493 TM Program Teaching Internship
- MVS 497 TM Program Research Internship

plus up to 48 units from the following:
- MVS 490 TM Program Teacher Training—Part I
- MVS 491 TM Program Teacher Training—Part II
- MVS 495 TM Program Governor Training
- MVS 498 TM Program Minister Training

plus
- MVS 390 Senior Project I: Seminar and Comprehensive Exam
- MVS 391 Senior Project II: Research

remaining units to be chosen from the following:
- MVS 200 The Philosophy of Action
- MVS 202 Higher States of Consciousness
- MVS 206 Collective Consciousness
- MVS 208 Maharishi Vedic Science I
- MVS 210 Maharishi Vedic Science II
- MVS 221 Sanskrit I
- MVS 222 Sanskrit II
- MVS 300 Source Documents in MVS I
- MVS 304 Applications of Vedic Science
- MVS 307 Practicum in Vedic Science
- MVS 308 Scientific Research

Requirements for the Minor in Maharishi Vedic Science

To graduate with a minor in Maharishi Vedic Science, students must successfully complete one semester-long module (20 units) of course work in one of the following options:

Option 1
- MVS 202 Higher States of Consciousness
- MVS 206 Collective Consciousness
- MVS 208 Maharishi Vedic Science I
- MVS 210 Maharishi Vedic Science II
- MVS 300 Source Documents in MVS I

Option 2
- MVS 304 Applications of Vedic Science
- MVS 307 Practicum in Vedic Science
- MVS 308 Scientific Research

plus
- MVS 321 Readings in Vedic Literature I
- MVS 322 Readings in Vedic Literature II

or
- MVS 312 Fieldwork (4–8 units)

or
- MVS 313 Fieldwork (4–8 units)

Option 3
- MVS 222 Sanskrit II
- MVS 223 Sanskrit III
- MVS 321 Readings in Vedic Literature I
- MVS 322 Readings in Vedic Literature II
- MVS 323 Readings in Vedic Literature III

Option 4

at least 20 units selected from the following Maharishi Gandharva Veda music courses, taken within one year:
- MVS 340 Maharishi Gandharva Veda Musicianship
- MVS 342 Health Benefits of Maharishi Gandharva Veda Music
- MVS 343 Maharishi Vedic Science, Sound, and Music
- MVS 344 Ear Training
- MVS 345 Melody in Maharishi Gandharva Veda Music
- MVS 346 Rhythm in Maharishi Gandharva Veda Music
- MVS 347 Time Theory in Maharishi Gandharva Veda Music

Requirements for the Minor in the Development of Consciousness

To graduate with a minor in the Development of Consciousness, students must complete the following course work in Forest Academies and Research in Consciousness:
Forest Academies

Required courses:
• FOR 100 Maharishi Science of Creative Intelligence (same as NLS 100)
• FOR 431 Higher States of Consciousness

plus 12 units from the following:
• FOR 411 Self-Referral Consciousness
• FOR 430 Topics in Maharishi Vedic Science
• FOR 432–499

Research in Consciousness
2 units per semester of:
• RC 320 Collective Practice of the TM Program

or 4 units per semester of:
• RC 332 Collective Research in Consciousness

NOTE: Students in the Maharishi Vedic Medicine program not taking FOR 100 need to substitute 2 units of other FOR courses.

Requirements for the Specialization in Research in Consciousness

The specialization in Research in Consciousness can be added to an undergraduate or graduate student’s degree. Undergraduates need to complete 24 units, graduate students 8 units, from the following courses:
• MVS 490 TM Program Teacher Training—Part I
• MVS 491 TM Program Teacher Training—Part II
• MVS 492 TM Program Fieldwork Internship

Entrance Requirements for the Master of Arts Degree in MVS

For entrance into the M.A. in MVS program, students must hold a bachelor’s degree. In addition, students must be practicing the Transcendental Meditation and TM-Sidhi programs, and complete 24 units of undergraduate courses including: MVS 202, MVS 206, MVS 208, MVS 210, MVS 300, and MVS 308.

NOTE: Students whose first language is not English should be aware that a TOEFL score of 600 is required for entrance into this program.

Graduation Requirements for the Master of Arts Degree in MVS

In order to qualify for the degree of M.A. in MVS, students must successfully complete all requirements for the master’s degree, including FOR 500, the Science of Creative Intelligence. Students must have passed the Science of Creative Intelligence Course with an ‘A’ and thus become a teacher of SCI. (Please refer to “Degree Requirements” in “Academic Policies.”) In addition, students must complete 40 units of course work as follows:

Graduation Requirements for M.A. in MVS
19–23 units of required courses:
• MVS 505 Maharishi Vedic Science I (4 units)
• MVS 506 Maharishi Vedic Science II (4 units)
• MVS 509 Bhagavad-Gita (4 units)
• MVS 525 Sanskrit (4 units)
• MVS 517 Research Paper (4 units)

or
• MVS 525 Sanskrit (4 units)
• MVS 540 Self-Referral Consciousness (4 units)
• MVS 541 Veda & Vedanga (4 units)
• MVS 544 Brahmana I (4 units)
• MVS 545 Brahmana II (4 units)
• MVS 517 Research Paper (4 units)

plus 17–21 units selected from the following:
• MVS 460 Vedic Principles & Technologies (1 unit)
• MVS 461 Maharishi Self-Pulse Reading (1–4 units)
• MVS 462 Yoga Asanas (1–4 units)
• MVS 463 Prevention (1–4 units)
• MVS 464 Diet and Digestion (1–4 units)
• MVS 501 Unified Field of Natural Law I (4 units)
• MVS 502 Unified Field of Natural Law II (4 units)
• MVS 503 MVS and the Philosophy of Science (4 units)
• MVS 507 Maharishi Vedic Science III (4 units)
• MVS 511 Bhagavad-Gita II (4 units)
• MVS 513 Maharishi Vedic Approach to Health I (4 units)
• MVS 514 Maharishi Vedic Approach to Health II (4 units)
• MVS 515 Maharishi’s Vedic Theme of Education (4 units)
• MVS 542 Upanga (4 units)
• MVS 543 Upaveda I (4 units)
• MVS 544 Brahmana I (4 units)
• MVS 545 Brahmana II (4 units)
• MVS 546 Pratishakhyas (1.5 units)
• MVS 547 Devata (1.5 units)
• MVS 550 Total Knowledge I (4 units)
• MVS 551 Total Knowledge II (4 units)

NOTE: In the event that a student has completed some of these courses as part of the M.A. in MVS with an Emphasis in Research in Consciousness, the student may petition the Department to be allowed to complete this degree by waiving those courses which overlap.

Students whose extended plan of study allows them to complete at least 30 units of RC 535 may elect to earn a terminal version
of the M.A. in MVS by completing the 3-unit versions of the required and elective courses listed above, plus MVS 517 Research Paper (4 units). Students who wish to be eligible for application for admission to the Ph.D. in Maharishi Vedic Science must also take MVS 548 Academic Writing (1 unit) to accompany each of the 3-unit courses of their degree.

In this case, Graduation Requirements are:

31 units as follows:
- MVS 525 Sanskrit (3 units)
- MVS 540 Self-Referral Consciousness (3 units)
- MVS 541 The Veda & Vedanga (3 units)
- MVS 542 Upanga (3 units)
- MVS 543 Upaveda I (3 units)
- MVS 549 Upaveda II (3 units)
- MVS 544 Brahmana I (3 units)
- MVS 545 Brahmana II (3 units)
- MVS 546 Pratishakhya (1.5 units)
- MVS 547 Devata (1.5 units)
- MVS 517 Research Paper (4 units)

plus 3 units of:
- FOR 490 World Peace Assembly (0.5 units per assembly)

plus 30 units of:
- RC 535 Collective Research in Consciousness (5 units per semester)

Students who wish to be considered for the Ph.D. must also complete 9 units of:
- MVS 548 Academic Writing (1.5 units per semester)

Master’s Degree Concentrations

Students in the M.A. in MVS listed above may add a concentration to their degree by completing additional course work in one of the following areas:

Academic Concentrations—Students complete 20 units of additional course work.

The three Academic Concentrations are:
- **Concentration in Advanced Maharishi Vedic Science**
 20 units of course work in classes that were not taken for the M.A. in SCI, or have been significantly reformulated with new books and materials since they were taken, or MVS 520 Advanced Studies in Maharishi Vedic Science
- **Concentration in Maharishi Vedic Medicine**
 20 units of course work in the core curriculum of the College of Maharishi Vedic Medicine
- **Concentration in Reading the Vedic Literature**
 20 units of course work selected from the following:
 - MVS 525 Sanskrit I
 - MVS 526 Sanskrit II
 - MVS 527 Sanskrit III
 - MVS 534 Readings in Vedic Literature

Practicum Concentrations—Students expand, apply, and express their growing knowledge of the Science of Creative Intelligence and Maharishi Vedic Science in professional settings. The Practicum Concentrations may be taken concurrently with the nonstandard schedule of study, or they may be taken after some or all of the M.A. course work in the standard schedule has been completed.

The two Practicum Concentrations are:
- **Concentration in Maharishi Vedic Technologies**
 20 units of:
 - MVS 580 Professional Development in Maharishi Vedic Technologies
- **Concentration in Educational Applications of Maharishi Vedic Science**
 20 units of:
 - MVS 581 Educational Applications of Maharishi Vedic Science

Research in Consciousness Concentration—Students complete 3 years of extended practice of the Maharishi Transcendental Meditation and TM-Sidhi programs

27 units of:
- RC 545 Advanced Collective Research in Consciousness

Maharishi Gandharva Veda Music Concentration—Students complete one or two semesters of theory and instruction in Maharishi Gandharva Veda music, taken within one year

20–40 units of Maharishi Gandharva Veda music courses including:

at least 8 units selected from:
- MVS 340 Maharishi Gandharva Veda Musicianship
- MVS 342 Health Benefits of Maharishi Gandharva Veda Music
- MVS 343 Maharishi Vedic Science, Sound, and Music
- MVS 344 Ear Training

plus, at least plus 8 units selected from:
- MVS 345 Melody in Maharishi Gandharva Veda Music
- MVS 346 Rhythm in Maharishi Gandharva Veda Music
- MVS 347 Time Theory in Maharishi Gandharva Veda Music

plus a recital
Graduation Requirements for the
Master of Arts Degree in MVS with an Emphasis
in Research in Consciousness

This three-year program combines extended research in consciousness through the Creating Coherence Program with classes meeting on a nonstandard schedule (12 weeks per 3-unit course). This is a terminal degree. It does not fulfill the prerequisites for entering the doctoral program in MVS.

In order to qualify for the degree of M.A. in MVS with an emphasis in Research in Consciousness, students must successfully complete all general requirements for the master’s degree, including FOR 500, the Science of Creative Intelligence. (Please refer to “Degree Requirements” in “Academic Policies.”) In addition, students must complete 54 units of course work as follows:

27 units of the following required courses:
3–6 units of:
• MVS 525 Sanskrit I (3–4 units)
• MVS 526 Sanskrit II (3–4 units)

8–15 units selected from:
• MVS 540 Self-Referral Consciousness (3–4 units)
• MVS 541 The Veda and Vedanga (3–4 units)
• MVS 542 Upaveda I (3–4 units)
• MVS 543 Upaveda II (3–4 units)
• MVS 544 Brahmana I (3–4 units)
• MVS 545 Brahmana II (3–4 units)
• MVS 546 Pratishakhya (3–4 units)
• MVS 547 Devata in Veda and Physiology (3–4 units)

9 units of:
• MVS 534 Readings in Vedic Literature (3–4 units)

plus 27 units of:
• RC 545 Advanced Collective Research in Consciousness

Note: The general degree requirement of RC 535 is waived for students in this program. The only Forest Academies required in this program are FOR 500 or FOR 501 in the first semester.

Entrance Requirements for the
Ph.D. Degree in Maharishi Vedic Science

Students entering the program must be practicing the TM-Sidhi program for at least one year, hold a Master of Arts degree in Maharishi Vedic Science (please refer to listing above for requirements), have at least one additional year of formal study of Maharishi Vedic Science, or experience in professions involving implementation of Maharishi Vedic Science, and have demonstrated the ability to undertake doctoral level work. For acceptance into the program, a student’s complete academic record, Graduate Record Examination (GRE) General Test scores, and personal recommendations are also considered.

The Ph.D. in MVS is the highest academic and professional degree in the discipline devoted to the study of the holistic development of consciousness. The Department will, therefore, evaluate students not only for their demonstrated ability to undertake doctoral level academic work in the field, but also for the prospective student’s demonstrated ability to serve as an example of the highest standards of holistic development.

The Department of Maharishi Vedic Science offers the Ph.D. in Maharishi Vedic Science degree as follows:
• The one-year core curriculum portion of the program meets mornings and afternoons Monday through Friday and on Saturday mornings (4 weeks for each 4-unit course).
• The remaining portion of the doctoral program—dissertation proposal, preparation, and research—is conducted over a two-to-four-year period.

Graduation Requirements for the
Ph.D. Degree in Maharishi Vedic Science

To graduate with a Ph.D. in Maharishi Vedic Science, students must successfully complete all general requirements for the Ph.D. degree, including FOR 500, the Science of Creative Intelligence. (Please refer to “Degree Requirements” in “Academic Policies.”) Program requirements are to complete the core curriculum and then complete the program with a dissertation in one of the following four areas of emphasis: 1) Vedic Literature, 2) Applications of Maharishi Vedic Science, 3) Modern Science and Maharishi Vedic Science, or 4) Higher States of Consciousness.

Core Curriculum:
• MVS 601 Special Topics I
• MVS 602 Special Topics II
• MVS 603 Special Topics III
• MVS 607 Sanskrit II
• MVS 608 Sanskrit III
• MVS 611 Research Methods
• MVS 612 Research Principles, Logic, and Methods I
• MVS 613 Research Principles, Logic, and Methods II
• MVS 618 Scientific Research
• MVS 680 MVS Seminar (1 unit per semester)
• MVS 691 Preparation for Qualifying Examination

A qualifying examination is taken at the completion of the core curriculum. When successfully completed, the student is advanced to Ph.D. candidate status.

Dissertation proposal (MVS 700) is prepared and submitted for
approval. (When accepted, the student is advanced to the Ph.D. researcher status.)

Original research and dissertation preparation (MVS 701)

Presentation of a formal lecture on the dissertation topic, and an oral defense of the dissertation

Acceptance of dissertation by the Graduate School and the Library Certification by the graduate faculty of the student’s continuing exemplification of the highest standards of holistic development.

Certificate in Research in Consciousness

To graduate with a Certificate in Research in Consciousness, a student must successfully complete 24 months (12 units) of Research in Consciousness: The Source of Management (RC 350).

Graduation Requirements for the Maharishi Gandharva Veda Music One-Year Certificate Program

To graduate with a Maharishi Gandharva Veda Music One-Year Certificate, students must successfully complete all general requirements for certificate programs. (Please refer to “Degree Requirements” in “Academic Policies.”) As part of these requirements, students take 20 units of course work selected among the following:

• MVS 340 Maharishi Gandharva Veda Musicianship
• MVS 342 Health Benefits of Maharishi Gandharva Veda Music
• MVS 343 Maharishi Vedic Science, Sound, and Music
• MVS 344 Ear Training
• MVS 345 Melody in Maharishi Gandharva Veda Music
• MVS 346 Rhythm in Maharishi Gandharva Veda Music
• MVS 347 Time Theory in Maharishi Gandharva Veda Music

plus visiting musicians

plus journal, final thesis, and recital

NOTE: Certificate requirements must be completed within one year.

Graduation Requirements for the Maharishi Gandharva Veda Music Two-Year Certificate Program

To graduate with a Maharishi Gandharva Veda Music Two-Year Certificate, students must successfully complete all general requirements for certificate programs. (Please refer to “Degree Requirements” in “Academic Policies.”) As part of these requirements, students take 40 units of course work selected among the following:

• MVS 340 Maharishi Gandharva Veda Musicianship
• MVS 342 Health Benefits of Maharishi Gandharva Veda Music

NOTE: Certificate requirements must be completed within two years.

COURSE DESCRIPTIONS

NOTE: 4-unit courses may be offered for 2 or 3 units during shorter blocks.

Undergraduate MVS Courses

MVS 100: Developing Full Human Potential: Instruction in the Transcendental Meditation Technique

Research indicates that individual practice of the Transcendental Meditation program provides a unique state of deep physiological rest which dissolves accumulated stress and tension while simultaneously increasing intelligence, creativity, happiness, and self-actualization. Practice of the Transcendental Meditation technique has been found to significantly improve physical health, academic performance, social behavior, workplace productivity, and peace in society.

Transcendental Meditation is a simple, effortless technique that involves no belief system or lifestyle changes. Course includes personal instruction, additional sessions discussing the short- and long-term results of the Transcendental Meditation program, and ongoing guidance to foster correct practice. (1–2 units)

MVS 122 Music: Life Is Music

Most people do not consider themselves “musical.” But, from a different angle, the basic elements of music—vibration and sound, rhythm and harmony—lie at the very heart of life itself. This is why music is called the universal language.

Most people enjoy music, though—and enjoying music is where this course begins. The course emphasizes an intuitive approach to music appreciation and performance rather than intellectual analysis. Students listen actively to live performances and recordings and learn to recognize the styles of the greatest classical composers.

On this foundation, students learn the fundamentals of reading music. Then they choose between singing in a chorus or learning the basics of playing the keyboard—and they give a brief performance at the end of the course. As part of the course there will be live performances and discussions led by the music
faculty, as well as special guest performances and seminars with in-residence experts in the classical music of India, known as Maharishi Gandharva Veda music. Students also learn about the harmonic series, music history, the American popular song, and modern music technology. (2 units) (Distribution Area: Arts)

MVS 102 Maharishi Vedic Science and Sanskrit: Accelerating Growth to Enlightenment

“Consciousness is the most basic element in creation; therefore the study of consciousness and research in consciousness, which is offered by the traditional Vedic Literature, gives the student the ability to do anything and achieve anything with the support of the evolutionary power of Natural Law.”—Maharishi

Reading the Vedic Literature in Sanskrit is a new technology of Maharishi Vedic Science to speed the development of higher states of consciousness. In this course students learn to read the Vedic Literature in Sanskrit and discover how this practice actually strengthens brain functioning. Students also learn the basic principles of Maharishi Vedic Science, including the recent discovery of how human physiology forms a perfect replica of Natural Law, as embodied in the 40 aspects of the Veda and Vedic Literature. This historic discovery reveals that the natural laws governing the universe are the same laws governing our physiology—meaning that each of us has access, within our own physiology, to the total potential of Natural Law. This in turn gives us the potential to know anything, do anything, and accomplish anything. (4 units) (Note: Students with a background in Maharishi Vedic Science, and reading Sanskrit in Devanagari take MVS 192.

MVS 192 Maharishi Vedic Science and Sanskrit: Accelerating Growth to Enlightenment — Advanced Section

“Consciousness is the most basic element in creation; therefore the study of consciousness and research in consciousness, which is offered by the traditional Vedic Literature, gives the student the ability to do anything and achieve anything with the support of the evolutionary power of Natural Law.”—Maharishi

Reading the Vedic Literature in Sanskrit is a new technology of Maharishi Vedic Science to speed the development of higher states of consciousness. In this course students learn to read the Vedic Literature in Devanagari and deepen their understanding of the role of reading the Vedic Literature in developing enlightenment.

Students also deepen their understanding of the fundamental themes of Maharishi Vedic Science and cultivate their ability to express these themes in speaking and writing. Also included is the recent discovery of how human physiology forms a perfect replica of Natural Law, as embodied in the 40 aspects of the Veda and Vedic Literature. This historic discovery reveals that the natural laws governing the universe are the same laws governing our physiology—meaning that each of us has access, within our own physiology, to the total potential of Natural Law. This in turn gives us the potential to know anything, do anything, and accomplish anything. (4 units) (Note: This course is for those who comfortably read Sanskrit in Devanagari and have considerable background in Maharishi Vedic Science.)

MVS 200 Philosophy of Action

This course investigates how action performed from the level of pure consciousness is purposeful, efficient, and orderly—spontaneously gaining the support of all the Laws of Nature. Topics include the nature and purpose of action, principles of action, action and higher states of consciousness, and Maharishi’s philosophy as it is expressed in his commentary on the first six chapters of the Bhagavad-Gita. (variable units)

MVS 201 Vedic Study: The Source, Course, and Goal of Knowledge from the Vedic Rishis to Maharishi Mahesh Yogi

This special videotaped course by Maharishi presents an introduction to Vedic knowledge. The foundation of the course and the one prerequisite of Vedic study is the student’s own personal experience of pure consciousness, the Unified Field of Natural Law, through the practice of the Transcendental Meditation and TM-Sidhi programs. Topics include the aspects of Vedic Literature, the phenomenon of cognition, the eternity of the Veda, an analysis of Agnim (the first word of Rik Veda), and the sequential unfolding of complete knowledge in the Veda. (variable units)

MVS 202 Higher States of Consciousness

This course covers the first precise scientific description of higher states of consciousness that arise naturally and spontaneously through the Transcendental Meditation and TM-Sidhi programs. The course explores each of the higher states of consciousness through subjective descriptions of direct experience and objective scientific research. (variable units)

MVS 204 Creativity

Maximum creativity arises from the deepest level of consciousness, the Unified Field of Natural Law, the source of the creative process in Nature. This course examines the expressions of creativity in different fields of human endeav-
or—the sciences, the arts, business, and government—as expressions of the infinite dynamics of creativity found in the field of pure consciousness. It considers the ability of Maharishi Vedic Science to naturally unfold the total creative potential of every individual and every society. (variable units)

MVS 206 Collective Consciousness
Students explore the principles and dynamics of collective consciousness and its expression in collective life. They also examine the evidence verifying beneficial changes in society that group practice of the Transcendental Meditation and TM-Sidhi programs produces. (variable units)

MVS 208 Maharishi Vedic Science I
MVS 210 Maharishi Vedic Science II
MVS 212 Maharishi Vedic Science III
These courses investigate Maharishi’s explanation of the self-referral structure of pure knowledge as the source of all the Laws of Nature, the Veda. Topics include the structure of pure knowledge, including its correlation to the principles of modern science, and the mechanics by which pure knowledge unfolds from the three-in-one structure of self-referral consciousness and is reflected in the structure of the Vedic Literature. (variable units)

MVS 221 Sanskrit I
MVS 222 Sanskrit II Prerequisite: MVS 221
MVS 223 Sanskrit III Prerequisite: MVS 222
These courses offer a sequential introduction to the proper pronunciation and reading of classical Sanskrit—the language of the Vedic Literature. In addition, students study Maharishi’s explanation of the role of Sanskrit, as the language of Nature, in his Vedic Science. After gaining experience in the correct pronunciation and the ability to read Devanagari text, students conduct research in the Vedic Literature by reading entire texts. (variable units)

MVS 300 Source Documents in MVS I
MVS 301 Source Documents in MVS II Prerequisite: MVS 300
Students examine selected source documents by His Holiness Maharishi Mahesh Yogi, including The Science of Being and Art of Living, Creating an Ideal Society, and Thirty Years Around the World: Dawn of the Age of Enlightenment. Course topics include the structure and dynamics of the human mind, the self-referral mechanics of creation and the process of evolution, collective consciousness, and the historical foundations of the applied value of Maharishi Vedic Science. (variable units)

MVS 302 Source Documents: The Bhagavad-Gita I
MVS 303 Source Documents: The Bhagavad-Gita II
This course studies Maharishi’s translation and commentary on the Bhagavad-Gita, a work that sequentially unfolds profound principles of human behavior. The Bhagavad-Gita, as a textbook for Maharishi Vedic Science, contains the essence of the detailed knowledge of consciousness contained in the Vedic Literature. Course topics include the scope, structure, and dynamics of human behavior; the seven states of consciousness; collective consciousness; and the solution to the fundamental dilemma at the basis of human suffering. (variable units)

MVS 304 Applications of Maharishi Vedic Science
In this course, students examine applications of Maharishi Vedic Science to education and rehabilitation, government and defense, or business and industry. Then they review research documenting the effectiveness of the technologies of Maharishi Vedic Science in these areas. (variable units)

MVS 307 Practicum in Maharishi Vedic Science
In this course students gain experience presenting the practical application of Maharishi Vedic Science to an area of society that they studied in MVS 304. (variable units) Prerequisite: MVS 304

MVS 308 Scientific Research
As a precise, systematic, and effective method for developing human consciousness, the Transcendental Meditation and TM-Sidhi programs have given rise to a substantial scientific research program. This course reviews contemporary methods of research and provides a thorough survey of this research at both the individual and collective levels. (variable units)

MVS 309 Fundamentals of Peace—Knowledge and Technologies
In this course students explore various methods of creating peace, with special emphasis on examining the documented effectiveness of these methods, and understanding the underlying scientific explanations accounting for this effectiveness. The special emphasis of this course is an in-depth examination of the Maharishi Vedic Technologies for creating peace, particularly on creating coherence in collective consciousness. Philosophy of science themes related to the validity of research in this field will be examined. (variable units)

MVS 310 TM Program Lecture Training and Checker Training
During the lecture portion of this course, students learn the four parts of the standard lecture for introducing prospective students to the scientifically validated benefits of regular practice of the Transcendental Meditation technique. During the checker
training portion of this course, students are trained in the procedure of how to check the correct practice of the Transcendental Meditation technique. (variable units) Prerequisite: consent of instructor

MVS 312 Fieldwork I
During this course students are placed in nonprofit educational institutions authorized to hold courses in the Transcendental Meditation technique. Students help organize such courses, apply their lecture and/or checking skills, and help with expansion projects for these institutions. (variable units) Prerequisites: MVS 310 and the consent of the instructor

MVS 313 Fieldwork II
In this course students will learn principles of presenting Maharishi Vedic Science. First, the students will practice making presentations on campus under the direction of the faculty. Then, they will make presentations in the field and receive further guidance. Both content and delivery will be emphasized. (variable units—may be repeated)

MVS 314 Fieldwork: Academic Projects
In this course students will work closely with senior faculty on selected special projects, such as the development of books and other curricular materials on Maharishi Vedic Science. (variable units)

MVS 315 TM Program Lecture Training
During this course, students learn the four parts of the standard lecture for introducing prospective students to the scientifically validated benefits of regular practice of the Transcendental Meditation technique. (variable units) Prerequisite: consent of instructor

MVS 316 TM Program Checker Training
During this course, students are trained in the procedure of how to check the correct practice of the Transcendental Meditation technique. (variable units) Prerequisite: consent of instructor

MVS 321 Readings in Vedic Literature I
MVS 322 Readings in Vedic Literature II MVS 323 Readings in Vedic Literature III
MVS 324 Readings in Vedic Literature IV
These courses focus on reading classical texts of Vedic Literature for the sound value, enjoying benefits in consciousness and in physiology. Texts include: the Bhagavad-Gita, the Upanga, Ramayana, and selected Upanishads. (variable units—may be repeated for credit)

MVS 330 Transcendental Meditation Sidhi Course
Course description in “Special MVS Studies” at end of this section.

MVS 340 Maharishi Gandharva Veda Musicianship
What is beauty? Can musical talent be developed? Can we learn to perform without stage fright? These are some of the fundamental questions explored in this course—both theoretically and through practical experience. Students hear a colorful palette of Maharishi Gandharva Veda ragas as well as music from other cultures and time periods, to gain appreciation of the subtle, underlying principles of perception and aesthetics that govern ragas—and all music. Included is instruction in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units)

MVS 342 Health Benefits of Maharishi Gandharva Veda Music
Exploratory research indicates that the effects of listening to Maharishi Gandharva Veda music include an increase in brain wave coherence, more integrated behavior, and a tendency of mental activity to settle down and experience finer states of awareness. This course presents an overview of current research, while giving students the opportunity to study this music and explore their own responses to it. Included is instruction in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units)

MVS 343 Maharishi Vedic Science, Sound, and Music
Music has a powerful impact on human awareness. This course presents the profound correlation between sound, music, and consciousness. Special emphasis is given to the Shruti aspect of the Veda as the most coherent and primordial sound value in creation, and the mechanics of consciousness manifesting as sound and transforming into matter. The theoretical understanding is supported and integrated with the personal experience of hearing and playing the ancient art and science of Maharishi Gandharva Veda music. Included is instruction in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units)

MVS 344 Ear Training
Awareness of pitch and tuning, vocal training, and studying the ten basic scales in Maharishi Gandharva Veda are the main aspects of this course. Students are introduced to the concepts of relative pitch versus perfect pitch, and learn to develop both skills through techniques of “horizontal” and “vertical” listening. Elementary keyboards skills are taught to help support pitch identification. Included is instruction in at least one of the fol-
MVS 345 Melody in Maharishi Gandharva Veda Music
The goal of this course is to study the uniquely sequential unfoldment of tones in a raga, and how these tones give rise to melody. Topics include musical form, composition, interpretation, improvisation, embellishment, and cognition. Raga melodies are compared to melodic development in other musical styles, while students enhance their sense of musical direction and balance. Included is instruction in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units) Prerequisite: at least one of the following—MVS 340, MVS 342, MVS 343, or MVS 344; or consent of the instructor.

MVS 346 Rhythm in Maharishi Gandharva Veda Music
Students become fluent in the 5 major Gandharva rhythmic cycles and their variations and study basic principles of rhythmic improvisation in Maharishi Gandharva Veda music. Rhythm is explored in light of its fascinating correlation with the verses of the Veda and with rhythmic cycles in nature and in life. Included is instruction in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units) Prerequisite: at least one of the following—MVS 340, MVS 342, MVS 343, or MVS 344; or consent of the instructor.

MVS 347 Time Theory in Maharishi Gandharva Veda Music
Time Theory prescribes specific ragas to be performed at corresponding times of day or seasons. Several ragas for various times will be studied in detail, to learn to differentiate the melodic patterns and subtle musical characteristics of each one. Included is instruction in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units, may be repeated) Prerequisite: at least one of the following—MVS 340, MVS 342, MVS 343, or MVS 344; or consent of the instructor.

MVS 348 Communication Skills
The principles underlying effective communication are considered in the context of principles of Maharishi Vedic Science expressed in the Bhagavad-Gita and other Vedic texts. These Vedic texts are considered as case studies that exemplify how to develop one’s Self and solve the problems of the individual and society. The main areas of study include: communication, relationships, ideal behavior, and unfoldment of the Self. (variable units)

MVS 375 Source Documents: The Bhagavad-Gita
This course studies Maharishi’s translation and commentary on the Bhagavad-Gita, a work that sequentially unfolds profound principles of human behavior. The Bhagavad-Gita, as a textbook for Maharishi Vedic Science, contains the essence of the detailed knowledge of consciousness contained in the Vedic Literature. Course topics include the scope, structure, and dynamics of human behavior; the seven states of consciousness; collective consciousness; and the solution to the fundamental dilemma at the basis of human suffering. (variable units)

MVS 390 Senior Project I: Seminar and Comprehensive Exam
In this course, students complete a comprehensive exam on the core content of the Maharishi Vedic Science major. Following completion of the exam, students learn how to write a substantial theoretical paper in Maharishi Vedic Science. The seminar includes instruction and practice in writing theoretical and research reviews, proper documentation, and writing an abstract. (4 units—may be repeated) Prerequisite: completion of required major course work.

MVS 391 Senior Project II: Research
During this course students complete the research paper started in MVS 390. This paper represents the final integration of their knowledge of Maharishi Vedic Science. (4 units—may be repeated) Prerequisite: MVS 390

MVS 397 Topics in MVS
Students explore advanced topics in Maharishi Vedic Science under the guidance of faculty and eminent Vedic scholars. Topics may include the Maharishi Jyotish program, the Maharishi Vedic Approach to Health program, Vedic Engineering, and Maharishi Gandharva Veda music. (variable units—may be repeated)

MVS 408 Professional Development in Maharishi Vedic Technologies
This course is designed for students who are taking part in professional training programs in Maharishi’s Vedic Technologies, such as Maharishi Vedic Approach to Health Technician Training and Maharishi Jyotish Teacher Training Course. (Variable units based on one unit of credit for each week of full-time instruction.) Prerequisite: consent of the Department.

MVS 410 The Neurophysiology of Peace: the Potential of Human Brains and Behavior
Students will examine how the functioning of the human brain could be cultured to allow an individual to live life in a state of inner and outer peace. Since knowledge is the basis of experience, this course will allow each student to gain the
knowledge and neurophysiological understanding of unity, the basis of individual and collective peace. Key to our exploration will be the brain mechanisms that occur during practice of the Transcendental Meditation technique, using principles and dynamics derived from Maharishi’s Vedic Science and neuroscience research. The course concludes with an examination of how coherent functioning of the human brain can contribute to collective harmony in world consciousness—the neurophysiology of world peace. (variable units)

MVS 451 Maharishi Gandharva Veda Music Studio
This course is for students who are well on their way to completing the major in Maharishi Vedic Science with emphasis in Maharishi Gandharva Veda music. It is designed to help students focus on specific aspects of musical development under the guidance of the faculty. Included is instruction in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units; may be repeated) Prerequisite: at least 6 Maharishi Gandharva Veda courses and consent of instructor

MVS 452 Recital Preparation
This course gives students the opportunity to polish their performance skills in preparation for a student recital. Practical considerations are covered such as advertising, stage preparation, sound checks, etc., as well as oral presentations and written assignments related to the performance. Included is instruction in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units; may be repeated) Prerequisite: at least 4 Maharishi Gandharva Veda courses and consent of instructor

MVS 460 Maharishi’s Vedic Principles and Technologies for Living Wholeness
The goal of this course is for students to gain the practical knowledge and technologies of Maharishi Vedic Science necessary to bring their life into full alliance with the total potential of Natural Law and live in wholeness. During this course students will become established in the practice of the ideal daily routine, and learn the fundamental principles of Maharishi Vedic Approach to Health. (variable units)

MVS 461 Maharishi Self-Pulse Reading
This course provides the theory and practical technique for detecting balance and imbalance in the body through the Maharishi Self-Pulse program. Students gain a thorough understanding of how the intelligence within the physiology is reflected in the pulse. The course also describes measures to correct imbalances before disease arises. Students not only learn to detect states of physiological balance and imbalance; they also learn how the Maharishi Self-Pulse program can create a balancing influence in any area of imbalance, spontaneously enhancing physiological integration. (variable units)

MVS 462 Yoga Asanas
The goal of this course is to enhance physiological balance and mind-body coordination through simple Maharishi Yoga Asanas program postures and breathing exercises. This course gives a comprehensive understanding of the nature and attainment of Yoga, which is the unification of individual and cosmic life. (variable units)

MVS 463 Prevention
This course offers a holistic, prevention-oriented approach to good health that integrates principles from the 40 areas of Veda and the Vedic Literature to restore and maintain balanced health in mind, body, behavior, and environment. This course includes specific knowledge of daily and seasonal routines, diet, other health-promoting behavior, and the development of higher states of consciousness, all of which bring life into harmony with Natural Law. (variable units)

MVS 464 Diet and Digestion
This course provides profound principles and practical knowledge of how to promote good health through proper diet, digestion, and nutrition. Topics of this course include factors to consider in dietetics; the physiology of digestion and metabolism; balance and imbalance of digestion and metabolism, and their correction; the influence of mind, senses, emotions, and behavior on digestion; and the relationship of diet and digestion to the development of higher states of consciousness. (variable units)

MVS 480 Topics in Maharishi Vedic Science
Course description in “Special MVS Studies” at end of this section.

MVS 490 TM Program Teacher Training—Part I
Course description in “Special MVS Studies” at end of this section.

MVS 491 TM Program Teacher Training—Part II
Course description in “Special MVS Studies” at end of this section.

MVS 492 TM Program Fieldwork Internship
Course description in “Special MVS Studies” at end of this section.
MVS 493 TM Program Teaching Internship
Course description in “Special MVS Studies” at end of this section.

MVS 495 TM Program Governor Training
Course description in “Special MVS Studies” at end of this section.

MVS 497 TM Program Research Internship
Course description in “Special MVS Studies” at end of this section.

MVS 498 TM Program Minister Training
Course description in “Special MVS Studies” at end of this section.

MVS 499 Directed Study
(=variable units) Prerequisite: consent of the Department faculty

Graduate MVS Courses

Note: All 3–4 unit graduate courses can be taken in 1.5–2 unit sections, sections A and B. However, both sections A and B must be taken in order for the course to be considered completed.

MVS 501 The Unified Field of All Streams of Knowledge I
MVS 502 The Unified Field of All Streams of Knowledge II
In these courses students examine the discovery of the Unified Field of all the Laws of Nature, and its implications for all streams of knowledge: physics, mathematics, chemistry, computer science, business, government, education, psychology, literature, music, and art. (=variable units)

MVS 503 MVS and the Philosophy of Science
Students investigate the scientific character of Maharishi Vedic Science. Topics include the standard hypothetico-deductive and Kuhnian models of science, the relationship between theory and evidence in the scientific research programs of Maharishi Vedic Science, and the extent to which theory and research on Maharishi Vedic Science represents a new paradigm. (=variable units)

MVS 505 Maharishi Vedic Science I
MVS 506 Maharishi Vedic Science II
MVS 507 Maharishi Vedic Science III
These seminars provide an introduction to Maharishi Vedic Science, which gives a systematic description of the self-interacting dynamics of pure consciousness. Topics include Maharishi’s Aparausheya Bhashya of Rik Veda, the Constitution of the Universe, an overview of Veda and the Vedic Literature, and the Sanskrit alphabet and pronunciation. (=variable units)

MVS 509 Bhagavad-Gita I
MVS 511 Bhagavad-Gita II
These courses study Maharishi’s commentary on the Bhagavad-Gita, which provides a systematic exposition of the development of human consciousness, its relationship to knowledge, and its application to improve the quality of individual and collective life. (=variable units)

MVS 513 Maharishi Vedic Approach to Health I
MVS 514 Maharishi Vedic Approach to Health II
These courses provide an overview of the principles of Maharishi Vedic Approach to Health: how consciousness gives rise to the human physiology, and how balance can be restored to every aspect of the physiology. (=variable units)

MVS 515 Maharishi’s Vedic Theme of Education
This seminar reviews the philosophy and practice of Maharishi Vedic Science’s theme of education emphasizing the connection between the wholeness of knowledge and the experience of the students. (1.5–4 units)

MVS 517 Research Paper
In this course students discuss in depth a particular issue of interest in the light of Maharishi Vedic Science. (3–4 units)

MVS 519 Teaching Fieldwork
This course gives the student the opportunity to integrate knowledge gained in the program by assisting to teach Maharishi Vedic Science in undergraduate courses. (=variable units)

MVS 520 Advanced Study in Maharishi Vedic Science
This course is designed for students who have completed the Department’s Vedic Science offerings and wish to reexamine themes from these courses in light of more recent findings in the discipline. Possible topics included: Veda and Vedic Literature, the self-referral dynamics of consciousness, and the discovery of Veda and Vedic Literature in the human physiology. Also, recent books and lectures will be used. (=variable units—may be repeated) Prerequisite: consent of instructor

NOTE: This course is for students enrolled in the Advanced Concentration in Maharishi Vedic Science.
MVS 521 Fundamental Themes of MVS I
MVS 522 Fundamental Themes of MVS II
These courses provide an intellectual understanding of the fundamental principles by which Maharishi Vedic Science contributes to creating an ideal society and life with “all good everywhere and non-good nowhere.” Topics include individual health, societal health, and world peace. (variable units)

MVS 525 Sanskrit I
MVS 526 Sanskrit II Prerequisite: MVS 525
MVS 527 Sanskrit III Prerequisite: MVS 526
These courses introduce the proper pronunciation and reading of classical Sanskrit—the language of the Vedic Literature. Students study Maharishi’s explanation of the role of Sanskrit as the language of Nature in his Vedic Science. (variable units—may be repeated)

MVS 530 Educational Practicum
In this course students expand, apply, and express their knowledge of MVS in various educational and professional settings under the direction of the University faculty. The tasks they perform may include curriculum design, development of course materials, teaching, research, and professional applications of Maharishi Vedic Science programs. (variable units—may be repeated) Prerequisite: consent of the Department faculty

MVS 534 Readings in Vedic Literature
In this course students read classical source documents in Maharishi Vedic Science. Texts include the Bhagavad-Gita, Ramayana, and selected Upanishads. (variable units—may be repeated) Prerequisite: MVS 525

MVS 539 Maharishi Gandharva Veda Musicianship
What is beauty? Can musical talent be developed? Can we learn to perform without stage fright? These are some of the fundamental questions explored in this course—both theoretically and through practical experience. Students hear a colorful palette of Maharishi Gandharva Veda ragas as well as music from other cultures and time periods, to gain appreciation of the subtle, underlying principles of perception and aesthetics that govern ragas—and all music. An in-depth academic project is included. Additionally, in the course is instruction in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units)

MVS 540 Self-Referral Dynamics of Pure Consciousness, the Veda and Vedic Literature, Expressed as Human and Cosmic Physiology
This course explores the fundamental principles of the discovery by Raja Raam, Professor Tony Nader, M.D., Ph.D., under Maharishi’s guidance, that human physiology and cosmic physiology (the universe) are the expressions of the Veda and Vedic Literature—the orderly patterns of the total intelligence of Natural Law that maintain and govern every aspect of cosmic and individual life. (variable units)

MVS 541 The Vedas and Vedanga: How to Know, Preserve, and Use the Eternal Structure of the Wholeness of Life—Brahm
This course will examine ten fundamental values of the eternal structure and function of the infinite field of pure intelligence. The nature and range of Rik, Sama, Yajur and Atharva Veda will be explored. Also, other essential qualities of pure intelligence, the six Vedanga, will be analyzed in terms of their ability to know, preserve and utilize the field of total intelligence—Brahm in daily life. (variable units)

MVS 542 The Upanga (Darshana): Understanding and Experiencing the Totality of Life—Point and Infinity
This course explores the criteria and methods of gaining accurate and reliable knowledge both intellectually and experientially. Right knowledge provides the basis for appropriate and effective speech and action, which leads to accomplishment and fulfillment in life. The theme of the Upanga is to reveal the path of enlightenment; it leads one to increasingly refined and abstract understanding and experiences that unfold the nature of reality. (variable units)

MVS 543 The Upaveda I: Integrating and Establishing the Infinite in the Finite, the Spiritual in the Material
MVS 549 The Upaveda II: Integrating and Establishing the Infinite in the Finite, the Spiritual in the Material
This course explores the harmonizing effects of Gandharva Veda music, the natural cycles and rhythms of Nature; the invincible quality of Dhanur-Veda, Natural Law’s indomitable system of defense; the establishing quality of Sthapatya Veda design, architecture in accord with Natural Law that aligns individual life with cosmic life; and the balancing qualities of Maharishi Vedic Approach to Health that helps to create and maintain health through preventive techniques. (variable units)

MVS 544 The Brahmana I: Structuring, Enlivening, Illustrating and Remembering Eternal Truth
MVS 545 The Brahmana II: Structuring, Enlivening, Illustrating and Remembering Eternal Truth
This course includes an analysis and experience of the transcendental, absolute value of life; the relative, manifest values
of life; and the lively link or gap between them. It explores how pure intelligence is capable of maintaining full memory of all its qualities and activities while expressing its transcendental nature, in the form of manifest characters and events that serve to illustrate and embody the eternal, self-referral dynamics of creation. (variable units)

MVS 546 The Pratishakhya and Vedic Name and Form: Exploring the Fabric of Immortality
This course explores the reality of life in terms of the Pratishakhya and Vedic name and form. The Pratishakhya and Vedic name and form reveal that all the specific, seemingly localized, expressions of the wholeness of life are nothing other than that wholeness itself: Every particular aspect of Vedic Literature, and its expression in creation, is simultaneously point and infinity, manifest and unmanifest—the fabric of immortality is revealed. (variable units)

MVS 547 Eternal Laws of Nature: Devata in Vedic Literature and in Human and Cosmic Physiology
This course examines the fundamental structures and functions of Natural Law, the self-referral dynamics of the unbounded field of pure intelligence, expressed as the Laws of Nature. These Laws of Nature, responsible for the creation, maintenance, evolution, dissolution and recreation of everything in the universe, are referred to as Devata in the Vedic Literature. The course explores the specific qualities and creative powers of each of the major Devata, from their descriptions in the Vedic Literature, and from their corresponding functions and forms as embodied in the human and cosmic physiology. The practical application of the discovery of the Devata in individual and cosmic life will also be analyzed in relation to the ability of this knowledge to bring success and fulfillment to all areas of individual and national life. (variable units)

MVS 548 Academic Writing
This course is structured to develop and refine students’ writing abilities through repeated rewriting of extended versions of their class papers. (variable units—may be repeated)

MVS 549 The Upaveda II: Integrating and Establishing the Infinite in the Finite, the Spiritual in the Material (See above MVS 543)

MVS 550 Total Knowledge I
MVS 551 Total Knowledge II
These courses explore the nature and application of total knowledge, the unified basis of knowledge that underlies all disciplines. Topics include: the discovery of Veda in the human physiology, Consciousness-Based Education, total utilization of the brain, and the fruit of all knowledge. (variable units)

MVS 562 Health Benefits of Maharishi Gandharva Veda Music
Exploratory research indicates that the effects of listening to Maharishi Gandharva Veda include an increase in brain wave coherence, more integrated behavior, and a tendency of mental activity to settle down and experience finer states of awareness. This course presents an overview of current research, while giving students the opportunity to study this music and explore their own responses to it. An in-depth academic project is included. Additionally, instruction is included in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units)

MVS 563 Maharishi Vedic Science, Sound, and Music
Music has a powerful impact on human awareness. This course presents the profound correlation between sound, music, and consciousness. Special emphasis is given to the Shruti aspect of the Veda as the most coherent and primordial sound value in creation, and the mechanics of consciousness manifesting as sound and transforming into matter. The theoretical understanding is supported and integrated with the personal experience of hearing and playing the ancient art and science of Maharishi Gandharva Veda music. An in-depth academic project is included. Additionally, instruction is included in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units)

MVS 564 Ear Training
Awareness of pitch and tuning, vocal training, and studying the ten basic scales in Maharishi Gandharva Veda—these are the main aspects of this course. Students are introduced to the concepts of relative pitch versus perfect pitch, and learn to develop both skills through techniques of “horizontal” and “vertical” listening. Elementary keyboards skills are taught to help support pitch identification. An in-depth academic project is included. Additionally, instruction is included in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units, may be repeated)

MVS 565 Melody in Maharishi Gandharva Veda Music
The goal of this course is to study the uniquely sequential unfoldment of tones in a raga, and how these tones give rise to melody. Topics include musical form, composition, interpretation, improvisation, embellishment, and cognition. Raga melodies are compared to melodic development in other musical styles, while students enhance their sense of musical direction and balance. An in-depth academic project is included. Additionally, instruction is included in at least one of the fol-
lowing: bamboo flute, tabla, sitar, or voice. (variable units) Prerequisite: at least one of the following—MVS 340, MVS 342, MVS 343, or MVS 344; or consent of the instructor

MVS 566 Rhythm in Maharishi Gandharva Veda Music
Students become fluent in the 5 major Gandharva rhythmic cycles and their variations and study basic principles of rhythmic improvisation in Maharishi Gandharva Veda music. Rhythm is explored in light of its fascinating correlation with the verses of the Veda and with rhythmic cycles in nature and in life. An in-depth academic project is included. Additionally, instruction is included in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units) Prerequisite: at least one of the following—MVS 340, MVS 342, MVS 343, or MVS 344; or consent of the instructor

MVS 567 Time Theory in Maharishi Gandharva Veda Music
Time Theory prescribes specific ragas to be performed at corresponding times of day or seasons. Several ragas for various times will be studied in detail, to learn to differentiate the melodic patterns and subtle musical characteristics of each one. An in-depth academic project is included. Additionally, instruction is included in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units, may be repeated) Prerequisite: at least one of the following—MVS 340, MVS 342, MVS 343, or MVS 344; or consent of the instructor

MVS 571 Maharishi Gandharva Veda Music Studio
This course is for students who are well on their way to completing the major in Maharishi Vedic Science with emphasis in Maharishi Gandharva Veda music. It is designed to help students focus on specific aspects of musical development under the guidance of the faculty. An in-depth academic project is included. Additionally, instruction is included in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units, may be repeated) Prerequisites: at least 6 Maharishi Gandharva Veda courses and consent of instructor

MVS 572 Recital Preparation
This course gives students the opportunity to polish their performance skills in preparation for a student recital. Included are practical considerations such as advertising, stage preparation, sound checks, etc., as well as oral presentations, written assignments related to the performance, and an in-depth academic project. Additionally, instruction is included in at least one of the following: bamboo flute, tabla, sitar, or voice. (variable units, may be repeated) Prerequisites: at least 4 Maharishi Gandharva Veda courses and consent of instructor

MVS 580 Practicum in Maharishi Vedic Technologies
Students expand and apply their growing knowledge of Maharishi Vedic Science by functioning as professional technicians delivering such programs as the Maharishi Vedic Approach to Health preventive health and rejuvenation programs. (variable units—may be repeated)

MVS 581 Practicum in Educational Applications of Maharishi Vedic Science
Students expand, express and apply their growing knowledge of Maharishi Vedic Science by functioning as professional exponents of Consciousness-Based Education, the educational system based on Maharishi Vedic Science. (variable units—may be repeated)

MVS 588 Fieldwork
This course gives students the opportunity to integrate knowledge gained in the program by making presentations on Maharishi Vedic Science in different areas of society. Areas may include business, education, health, government, defense, rehabilitation, or agriculture. Students present a written report on their project. (variable units) Prerequisite: consent of the Department faculty and the Academic Standards Committee

MVS 591 Writing Skills
Students enhance the skills needed to write about the Science of Creative Intelligence and Maharishi Vedic Science on a graduate level. This course is especially helpful for non-native English speaking students. (variable units—may be repeated)

MVS 597 Topics in Maharishi Vedic Science
Students explore topics in Maharishi Vedic Science under the guidance of University faculty and eminent Vedic scholars. Topics may include the Maharishi Jyotish program, the Maharishi Vedic Approach to Health program, Vedic Engineering, and Maharishi Gandharva Veda music. (variable units—may be repeated)

MVS 599 Directed Study
(variable units) Prerequisite: consent of the Department faculty

MVS 601 Special Topics I
MVS 602 Special Topics II
MVS 603 Special Topics III
MVS 604 Special Topics IV
These courses allow students the opportunity to study a topic within Maharishi Vedic Science in depth, such as the theme of self-referral in Maharishi Vedic Science or the idea of a subjective science. (variable units)
MVS 606 Sanskrit I
MVS 607 Sanskrit II Prerequisite: MVS 606
MVS 608 Sanskrit III Prerequisite: MVS 607
These courses offer a sequential introduction to the pronunciation and reading of classical Sanskrit, the language of Veda and the Vedic Literature. After gaining experience of proper pronunciation and ability in reading Sanskrit, students read classical texts of Vedic Literature for the sound value, enjoying the benefits in consciousness and in physiology. (variable units)

MVS 611 Research Methods
Students survey basic approaches to research such as quantitative, qualitative, historical, clinical, and philosophical methods of analysis. Topics include logical and practical considerations in experimental design and measurement, writing literature reviews, and selecting research topics, as well as research ethics and such non-experimental methods as computer simulation, textual analysis, and survey research. (variable units)

MVS 612 Research Principles, Logic, and Methods I
MVS 613 Research Principles, Logic, and Methods II
These courses introduce the principles and logic of scientific investigation and review the skills necessary for evaluating and undertaking scientific research. Topics include principles and methods of experimental designs and review of non-experimental methods such as textual analysis and case studies. These principles will be understood in practical contexts such as research in consciousness through the Transcendental Meditation and TM-Sidhi programs and the reading of Vedic Literature. (variable units)

MVS 616 Statistics
This course focuses on the use of statistics in the social sciences, especially as they relate to the growth of consciousness on individual and collective levels. Topics include: descriptive statistics, hypothesis testing and inference, regression techniques, analysis of variance, and non-parametric statistics. (variable units)

MVS 618 Scientific Research on the Technologies of Maharishi Vedic Science
This course will review research on the technologies of Maharishi Vedic Science, including key studies in the six-volume series of Collected Papers on the Transcendental Meditation and TM-Sidhi Program as well as more recent studies. The course will focus on the evaluation of the studies in light of research design considerations as well as the development of the ability to describe and answer questions about key studies. (variable units)

MVS 621 Specialized Research Paper
In this course students gain experience in research methods of Maharishi Vedic Science which are applied to a specific topic. The goal of the course is to prepare a short research paper suitable to submit for publication. (variable units)

MVS 630 Readings in Vedic Literature
In this course students read texts of Vedic Literature for the sound value, enjoying the benefits in consciousness and in physiology. Texts include the Bhagavad-Gita, Ramayana, and selected Upanishads. (variable units—may be repeated)

MVS 635 The Discovery of Veda and Vedic Literature in Human Physiology
This course studies the historic discovery of Veda and the Vedic Literature in human physiology, brought to light by Dr. Tony Nader under the guidance of Maharishi. Students learn:
• how the intelligence of Nature, as expressed in the Veda and Vedic Literature, forms the basis of the structure and function of the physiology, and
• how human physiology forms a perfect replica of Nature’s intelligence, the Constitution of the Universe.
This knowledge, together with the technologies that arise from it, represents the complete knowledge of perfect health—and the key to perfection in every area of life. (variable units)

MVS 680 MVS Seminar
The MVS graduate seminar includes a review of current research topics in the major disciplines and their relationship to the principles of Maharishi Vedic Science. Each session focuses on a particular discipline and its relationship to Maharishi Vedic Science and is led by senior graduate faculty. (Track I students take 1 unit per semester, Track II students take 0.5 units per semester) (0.5–1 unit—repeated each semester)

MVS 682 Advanced Fieldwork
This course gives students the opportunity to integrate research skills and teaching skills by assisting the faculty in teaching a Forest Academy—a two-week period of study of particular themes of Maharishi Vedic Science. As an alternate fieldwork project, students may arrange, prepare, and give a series of presentations in at least two applied fields, such as education, government, business, rehabilitation, and the health professions. (2 units—may be repeated)

MVS 691 Preparation for Qualifying Examination
This course provides the time necessary to prepare for the qualifying examination, which demonstrates research compe-
tence. It may be in the form of a research proposal, or in another form at the discretion of the program faculty. (variable units—may be repeated) Prerequisite: successful completion of the core curriculum

MVS 698 Directed Research
(variable units) Prerequisite: consent of the Department faculty and the Academic Standards Committee

MVS 699 Directed Study
(variable units) Prerequisite: consent of the Department faculty

MVS 700 Preparation of Dissertation Proposal
Having passed to doctoral candidacy, students prepare a proposal for a doctoral dissertation for acceptance by their major professor and dissertation guidance committee. (variable units—may be repeated for credit) Prerequisites: Ph.D. candidate status and consent of the dissertation advisor

MVS 701 Dissertation Research
Students conduct original research and prepare their dissertations during their third and fourth years in the program. (0.5–2.5 units—may be repeated each semester) Prerequisites: approval of the dissertation proposal and consent of the dissertation committee

FOREST ACADEMIES

General University Requirement
All students are required to take a Forest Academy in each semester they are enrolled in at least four blocks of classes.

Undergraduate Requirement
In the first semester, most students take the Science of Creative Intelligence (FOR 100, same as NLS 100) as an introduction to all subsequent course work at the University. This course takes the place of a Forest Academy in that semester. The following spring semester, students take Higher States of Consciousness (FOR 431). In all other semesters, students take the Forest Academy of their choice from those being offered at that time. To graduate with a bachelor’s or associate’s degree a student must successfully complete one Forest Academy for each semester enrolled, including FOR 100 and FOR 431. One of the elective Forest Academies can be waived for students who are enrolled in degree programs of three or more semesters. For certificate programs, this requirement varies—please consult the certificate program listing in this Bulletin for details.

Graduate Requirement
In the first semester, most students take the Science of Creative Intelligence (FOR 500). This course is an introduction to all subsequent course work at the University.

To graduate with a master’s or doctoral degree, a student must successfully complete one Forest Academy for each semester enrolled, including FOR 500. One elective Forest Academy may be waived for students who are enrolled in degree programs of three or more semesters.

NOTE: Students in some nonstandard graduate programs may have different Forest Academy requirements. Any deviation from the general requirement is listed with the individual program’s degree requirements.

COURSE DESCRIPTIONS

FOR 100 Science of Creative Intelligence
In recent years there has been a cry for a unified framework for human knowledge. The Science of Creative Intelligence (MVS) is a new science, founded by Maharishi in 1970 to meet this need.

In other sciences, you study the physical, chemical, or biological fields of Nature’s intelligence. In the Science of Creative Intelligence, students study the structure of the field of pure intelligence, from which all fields of knowledge arise. Only from this most fundamental level can knowledge be unified. This course examines how the creative intelligence displayed in every grain of creation arises in a systematic and sequential fashion from within that one basic universal field. Students also examine how one can access and use that universal field of intelligence to bring fulfillment to life and to life on Earth.

In 1972, Maharishi laid out the main principles of this new science in a 33-lesson, videotaped course. He integrated the understanding of Nature’s intelligence provided by modern science (through its objective approach) and by ancient Vedic Science (which utilizes both objective and subjective approaches to gaining knowledge).

Like all sciences, the Science of Creative Intelligence has an applied and a theoretical aspect. The applied aspect is the Transcendental Meditation program, which provides all human beings with the ability to directly access the field of pure intelligence in the simplest state of their own awareness. Students not yet instructed in the Transcendental Meditation program learn this simple, effortless technique as part of the MVS course. Through regular practice of the Transcendental Meditation technique, students begin to utilize the unlimited potential of their
own creative intelligence. MVS has profound practical applications—in education, health, government, economics, and rehabilitation. Scientific research has demonstrated its ability to solve problems in all areas of individual and collective life—opening the door to an ideal life for humanity. (4–5 units)

FOR 410 Discovery of Veda and the Vedic Literature in Human Physiology
This course introduces the Maharishi Vedic Science understanding of the Veda and Vedic Literature as the underlying intelligence which structures the universe, including our mind and body. Based on this understanding, students explore the historic discovery of Veda and Vedic Literature in the human physiology, brought to light by Dr. Tony Nader under the guidance of Maharishi. (2 units)

FOR 411 Self-Referral Consciousness and the Vedic Literature in Maharishi Vedic Science
This course introduces, through Maharishi’s videotaped lectures and writings, the understanding of how the self-interacting dynamics of consciousness is Veda and the Vedic Literature, the total potential of Natural Law which gives rise to the universe. (2 units)

FOR 428 Creating Peace
Through tapes, guest lectures, readings and discussions, the class will explore the deepest questions about creating sustainable world peace. The course reflects on how Maharishi’s Vedic knowledge and technologies for developing individual and societal coherence and harmony support and accelerate our own evolution and the initiatives of others desiring to create peace in the world today. (2 units)

FOR 429 Maharishi’s Principles of Success
Success in life is based on profound knowledge which guides action to produce the desired achievement to bring fulfillment. This course explores key themes of knowledge which highlight the contributions of Maharishi Vedic Science and Technologies to individual and professional success and fulfillment in life.

(2 units)

FOR 430 Topics in Maharishi Vedic Science
This course presents the knowledge in Maharishi Vedic Science, as formulated by its founder, His Holiness Maharishi Mahesh Yogi, and as applied to all streams of knowledge by the University faculty. (2 units—may be repeated) Prerequisite: consent of the Department faculty

FOR 431 Higher States of Consciousness
This course studies Maharishi’s precise descriptions of higher states of consciousness that arise naturally and spontaneously in the course of unfolding full human potential through the technologies of Maharishi Vedic Science. (2 units)

FOR 432 The Philosophy of Action
This course investigates the explanation in Maharishi Vedic Science of the role of action in the development of higher states of consciousness and how action performed from the level of pure consciousness spontaneously gains the support of all the Laws of Nature for maximum success. (2 units)

FOR 433 Consciousness and Physiology
This course reviews how consciousness gives rise to different constituents of the physiology, and examines the foundational principles of Maharishi Vedic Science that give rise to Maharishi Vedic Approach to Health and the discovery of Veda and the Vedic Literature in human physiology. (2 units)

FOR 434 The Creative Process: Tracing Human Creativity to the Infinite Creativity of Natural Law
From the standpoint of the Maharishi Science of Creative Intelligence program, creativity expresses the fundamental characteristic of Nature itself—to expand through the process of evolution and find full expression. In this course, students explore the full range of creativity, from the creative dynamics within the pure, self-referral level of consciousness, through self-expression in the arts and other fields, and culminating in Self-expression in Unity Consciousness. This rich and stimulating course, developed by faculty in the Departments of Fine Arts and Literature, includes beautiful tapes of Maharishi speaking on the creative process and a wide range of other creative activities. (2 units)

FOR 435 The Vedic Literature
This course reviews the mechanics, detailed in Maharishi Vedic Science, by which pure knowledge unfolds from the self-interacting dynamics of consciousness in the impulses of Natural Law reflected in the structure of the Vedic Literature: the Samhita, Brahmana, Vedanga, Upanga, Itihasa, Purana, Smriti, and Upaveda. (2 units)

FOR 436 Collective Consciousness
This course explores the principles and dynamics of collective consciousness and introduces the evidence verifying beneficial changes in individual and social life that group practice of the Transcendental Meditation and TM-Sidhi programs produce. (2 units)
FOR 437 Becoming a Leader: Achieving Greater Synergy through Wholeness on the Move
Delving into Maharishi’s knowledge of leadership, students hear leaders interpret their leadership experiences, and leadership consultants speak on the success of Consciousness-Based leadership. Students examine their own experiences of leadership and discover the principles of consciousness at work in those experiences. They also consider how to apply this knowledge of leadership in their future career. (2 units)

FOR 438 Ideal Relationships: Enjoying the Play of Wholeness on the Move
We live our lives in relationships, beginning with our mother, father, and family, expanding to our friends, spouse, and children, our business associates, our fellow citizens, and on to all the people of the world. Handling these relationships with wisdom, appropriateness, and love is central to our good fortune. The Science of Creative Intelligence and Maharishi Vedic Science provide insights into how all relationships have their source in the self-referral dynamics of consciousness, our own Self—and guidelines for ensuring that our relationships are in accord with the natural evolution of life in accord with Natural Law. The course features tapes of Maharishi, guest presentations, group projects, and practical knowledge of etiquette. (2 units)

FOR 439 The Bhagavad-Gita: Appreciating the Textbook of the Age of Enlightenment
In this course students experience the practical and universal nature of knowledge expressed in the Bhagavad-Gita, the central work of the Vedic Literature. During the course students:
• read all 18 chapters aloud,
• hear Vedic Pandits recite the Bhagavad-Gita in Sanskrit,
• begin learning the Bhagavad-Gita in Sanskrit, and
• read all the verses of the first six chapters and highlights from Maharishi’s commentary.
Students choose a special theme and trace it through the text, and express understanding of the Bhagavad-Gita through art, music, literature, drama, and games. (2 units)

FOR 440 Introduction to Sanskrit: Learning the Language of Nature
Maharishi has said that learning Sanskrit is absolutely essential for our evolution. Reading the Vedic Literature in Sanskrit, he explains, produces a distinct physiological effect, making brain functioning more orderly. Besides watching and discussing tapes of Maharishi on Sanskrit, students learn to pronounce the Sanskrit alphabet, learn to write and recognize letters in the Devanagari script, recite from the Bhagavad-Gita in Sanskrit, and learn Sanskrit quotations that Maharishi has emphasized over the years. (2 units)

FOR 441 Yogic Flying: Creating Happiness, Health, Enlightenment, and Heaven on Earth
Maharishi has brought to light powerful technologies for developing the unbounded potential of human consciousness and creating an ideal society. By far the most powerful of these is Yogic Flying, which induces maximum coherence in brain functioning, creates an upsurge in coherence throughout the collective consciousness of society, and brings life into harmony with Natural Law. In this course, students focus on the mechanics of Yogic Flying—how it works and how it produces such remarkable effects. In particular, students prepare to give Yogic Flying demonstrations. They prepare short presentations as a group, and in the second week of the course go to another school, college, or university and give a Yogic Flying demonstration. (2 units—may be repeated)

FOR 442 Maharishi Self-Pulse™ Program
Maharishi has encouraged every individual to learn the Maharishi Self-Pulse program as a technology for structuring more ideal health for themselves and their entire family. This course is the most comprehensive course offered to date. During the course the following topics are discussed:
• How the intelligence within the physiology is reflected in the pulse
• Feeling the influence of cosmic cycles in the pulse
• Feeling imbalances in the pulse
• The stages of imbalance
• Causes and effects of imbalance
• How the body’s inner intelligence protects against imbalance
• Restoring and maintaining balance through proper diet and through daily and seasonal routine. (2 units)

NOTE: Because this is a Maharishi Vedic University course, there is an additional charge. Some U.S. students may be eligible for additional financial aid to cover the cost. Please see the Financial Aid office for information.

FOR 445 Introduction to Maharishi Vedic Medicine: Human Physiology—Expression of Veda and Vedic Literature
This course presents the wholeness of the Maharishi Vedic Approach to Health, which is rooted in the historic discovery of Veda and the Vedic Literature in human physiology, brought to light by Dr. Tony Nader under the guidance of Maharishi. Students learn:
how the intelligence of Nature, as expressed in the Veda and Vedic Literature, forms the basis of the structure and function of the physiology, and

how human physiology forms a perfect replica of Nature’s intelligence, the Constitution of the Universe.

This knowledge, together with the technologies that arise from it, represents the complete knowledge of perfect health—and the key to perfection in every area of life. (2 units)

NOTE: Because this is a Maharishi Vedic University course, there is an additional charge. Some U.S. students may be eligible for additional financial aid to cover the cost. Please see the Financial Aid office for information.

FOR 446 Nobel Laureates
In this course, students hear presentations from a range of faculty on the latest and most exciting discoveries in each of their fields—discoveries that either have won a Nobel Prize or are worthy of one. Students learn more about the discovery process by exploring, with leading University faculty, the cutting edge of knowledge and the people behind it in a variety of disciplines ranging from physics to the visual arts. Students’ own self-referral creative process will be enlivened through multimedia presentations, lively discussions, readings, and creative exercises. (2 units)

FOR 447 Dr. Tony Nader Award: Preparatory Course
The University faculty have established a special award, the Dr. Tony Nader Award, which will go to the graduating senior who:

1) has most profoundly integrated the 40 qualities of the Veda and Vedic Literature with his or her discipline, and 2) submits an undergraduate portfolio of the highest quality. During this course, seniors prepare their portfolios to be submitted for this award. They begin this process with a review of Dr. Nader’s work on the 40 aspects of the Vedic Literature and their correspondence in the human physiology. Based on this review, students write a summary of how these aspects can be connected to their academic discipline. (2 units) Prerequisite: consent of instructor

FOR 448 Enlightened Entertainment
In this course students explore the nature and purpose of entertainment and its relationship to Maharishi Vedic Science. Students take lessons in Maharishi Gandharva Veda music and study Maharishi’s principles of ideal entertainment. As part of the course, workshops are presented by guest entertainers during which students create their own enlightened entertainment. (2 units)

FOR 450 Maharishi’s Recent Writings
This course gives students the opportunity to deeply study recent writings from Maharishi under the guidance of University faculty, and to research key themes from these writings in related videotapes and lectures. Possible texts include: Celebrating Perfection in Education, Maharishi’s Absolute Theory of Defense, or Maharishi Vedic University: Introduction. (2 units—may be repeated)

FOR 451 Maharishi Sthapatya Veda Design(MOU)
Maharishi Sthapatya Veda design 16-hour Maharishi Open University course. This course explores the principles of building and urban planning design in harmony with Natural Law, so that inhabitants enjoy improved health, happiness and good fortune. Additional charge, arranged through the MOU website.

FOR 452 Maharishi Gandharva Veda Music
Expressing the Eternal Harmonies of Nature
Maharishi Gandharva Veda music is the ancient knowledge of the music of Nature that creates balance and harmony in the musician, the audience, and the whole environment. This introductory course enlightens students in the theory of this knowledge, and includes instruction in sitar, tabla, bamboo flute, or voice. (MGV) (2 units)

FOR 454 Yoga Sutra
In this forest academy, students will read the Yoga Sutra in Sanskrit and in English, and will learn Vedic expressions from the Yoga Sutra emphasized by Maharishi. Students will view tapes by Maharishi on Yoga and the Yoga Sutra. Students will have the opportunity to round for the entire two weeks. This course is open only to Sidhas. (2 units)

FOR 460 Ideal Daily Routine: Aligning our Actions with the Cycles of Nature’s Intelligence
This course presents the knowledge from Maharishi Vedic Approach to Health concerning the optimum daily routine for establishing the foundation for lifelong excellent health and growing enlightenment. Topics include the effects of sleep and the results of sleep deficit, details of the ideal routine of diet and exercise, and the importance of regular experience of pure consciousness for optimum health and evolution.

FOR 464 The Upanga and the Development of Consciousness
This course explores the Upanga, the six branches of the Vedic Literature that give the vision of enlightenment and the technologies for the full development of consciousness. In
this course the students will read selections from the Upanga in Sanskrit and English; memorize Vedic expressions emphasized by Maharishi from two of the six branches of Upanga, Yoga Sutra and Brahma Sutra; study lectures by Maharishi on the Upanga; and explore the correlations between the Upanga and human physiology discovered by Professor Tony Nader, M.D., Ph.D. (2 units)

FOR 465 Maharishi’s Absolute Theory of Government
This course reviews the fundamental principles of government brought to light in Maharishi’s videotaped lectures and writings. A principal focus of the course will be a close reading of Maharishi’s book, Maharishi’s Absolute Theory of Government: Automation in Administration. A major theme is that every government worthy of the name must have the ability to prevent problems; it emphasizes that this goal is achievable for any government by aligning the constitution of the nation with the Constitution of the Universe, Cosmic Intelligence. Cosmic Intelligence, Maharishi explains, is that absolute intelligence of Natural Law at the source of all the Laws of Nature that governs the entire universe with absolute order and precision. Students also examine Maharishi’s analysis of how the nature and functioning of government reflect the quality of the collective consciousness of the nation, and how governmental performance can be improved by creating coherence in national consciousness through Maharishi’s Technologies of Consciousness. (2 units)

FOR 466 Presenting Consciousness-Based Education
Students are given the opportunity to discuss, write, and speak publicly about the system of education in which they are learning—Consciousness-Based Education. Topics include: historical precursors in the writings of great educators, scientific research, issues of educational reform, and approaches that Maharishi has used to describe it. At the conclusion of the course, students apply their public speaking skills in planning and giving a public lecture on Consciousness-Based Education at a local college or high school. (2 units)

FOR 490 World Peace Assembly
In this forest academy, students participate in a World Peace Assembly which allows the students to refine their own consciousness while creating coherence in national consciousness through Maharishi’s Technologies of Consciousness. (0.5 units, may be repeated)

FOR 500 The Science of Creative Intelligence
This is the foundation of our Consciousness-Based Education program. The Science of Creative Intelligence (SCI) has two aspects: (1) the systematic study of the field of pure intelligence, the Unified Field of Natural Law, and the principles by which it governs the coexistence and evolution of all systems in Nature, and (2) the direct experience of this field through the Transcendental Meditation and TM-Sidhi programs. The Science of Creative Intelligence links the deepest understanding about nature found in modern science with the understanding expressed in Maharishi Vedic Science. The Science of Creative Intelligence, founded by Maharishi, is a new discipline that provides systematic knowledge and experience of pure creative intelligence. The Science of Creative Intelligence not only validates the truth of knowledge on the basis of personal experience, but also finds validation in modern empirical research. With their daily enlivenment of consciousness through group practice of the technologies of Maharishi Vedic Science, students grow in the fruit of all knowledge: the ability to know anything, do everything right, and thereby accomplish anything. Therefore, the Maharishi Science of Creative Intelligence™ course is the foundation for a universal and complete understanding of the full range of human potential.

Maharishi summarizes the vision opened by his Science of Creative Intelligence as follows: “The Science of Creative Intelligence opens human awareness to the Unified Field of Natural Law. The Unified Field is the common basis of all activity in the universe. The application of this knowledge is in all fields of life, and research properly guided in the field of the Science of Creative Intelligence will revolutionize all fields of life and living in the world. It will bring life in accordance with Natural Law. That means life spontaneously in the evolutionary direction which is the basis of all success and progress in any country. The Science of Creative Intelligence introduced in education has a future for creating Heaven on Earth—life in the fullness of bliss and daily living without stress and suffering.”

This videotaped 33-lesson course includes discussion of the nature and range of creative intelligence, the qualities it displays, its principles, its expression in the life of the individual, and its application in the life of society to uplift human civilization to its highest level. (4 units)

FOR 598 Faculty Development Seminar for Graduate Students
This course prepares doctoral candidates to be competent college teachers and writers in their professions. Topics include lecturing skills, making instructional charts, designing learning activities, writing for general and professional readers, and evaluating one’s own and others’ teaching and writing. During the course students design and teach lessons, analyze examples of writing, write a short research paper or article, and understand their field of study in the context of interdisciplinary studies
through their teaching and writing. (2 units) Prerequisite: consent of instructor

FOR 700 Vedic Science Research: Using Maharishi Vedic Science to Illustrate Fundamental Principles in Dissertations

This course provides an opportunity for Ph.D. students to investigate the relation of Maharishi Vedic Science to their dissertations. What students produce in the course forms the seeds for sections in their final dissertations. During this course, students create a Unified Field Chart and a Richo Akshare line for their dissertation, refine their ability to write about Maharishi Vedic Science, and enjoy a lively interchange with fellow Ph.D. students from all departments in the University. (2 units—may be repeated) Prerequisite: Students must be in a doctoral program and have completed their Qualifying Exam.

RESEARCH IN CONSCIOUSNESS

Introduction

At Maharishi University of Management, we specialize in academic excellence, consciousness, creativity, high quality of life, and world peace. We cultivate all these values simultaneously through our group practice of the Transcendental Meditation and TM-Sidhi programs, including Yogic Flying.

These programs are a regular part of the academic schedule for all students. Students receive academic credit for their twice-daily group practice of these programs in the Research in Consciousness (RC) courses listed below. All students are automatically registered for their RC course when they register for each instructional course.

To participate in these courses, students follow the instructions they have received from their Transcendental Meditation instructor and the TM-Sidhi Program Administrators, who have been trained by Maharishi. In addition to these instructions, the University faculty have organized a structure for grading these courses. Grading for RC courses is based on two criteria:

1) attendance at group program, and
2) participation in a tutorial class each block.

A special Research in Consciousness grade point average (RC GPA) is listed on the transcript which includes just these courses.

General University Requirement

For graduation with a degree or a certificate from Maharishi University of Management,
ipate in the program. This course is for both undergraduate and graduate students. (0.5 units per month)

Graduate Course Descriptions

RC 520 Collective Practice of the Transcendental Meditation Program
All graduate students who practice the Transcendental Meditation technique but have not completed the TM-Sidhi course are automatically enrolled in this course every block they are enrolled at the University. Attendance is required for the group practice component of this course as well as a tutorial meeting each block. (0.5 units per block—up to 2.5 units per semester)

RC 535 Collective Research in Consciousness
All graduate students who have completed the Maharishi Transcendental Meditation Sidhi course are automatically enrolled in this course every block they are enrolled at the University. Attendance is required for the group practice component of this course as well as a tutorial meeting each block. (1 unit per block—up to 5 units per semester)

RC 545 Advanced Collective Research in Consciousness
Graduate students who are participating in the “Creating Coherence Program” are enrolled in this course rather than RC 535. This course has the same basic structure as RC 535 but more time is spent on this research each day. No tutorial meeting is required. Grading is based on attendance. (1 unit per block—up to 5 units per semester)

SPECIAL MVS STUDIES COURSES

NOTE: Some of the following courses are taught under the auspices of Maharishi Vedic Education Development Corporation (MVED).

MVS 330 Transcendental Meditation Sidhi Course
Full-time students are eligible to apply for the TM-Sidhi course as an elective. (There is an additional fee for this course. Consult the Student Accounts Office for current fee schedules.) (2 units) Prerequisites: satisfactory academic and personal performance while at the University, a record of good mental and physical health, completion of the TM-Sidhi course application, and acceptance by the TM-Sidhi program directors

MVS 480 Topics in Maharishi Vedic Science
This course presents knowledge of Maharishi Vedic Science, formulated by its founder, Maharishi Mahesh Yogi, applied to all streams of knowledge by the University faculty and guest lecturers. The principles of this integrated structure of knowledge are shown to have application for every area of society, as documented by the scientific research on the Transcendental Meditation and TM-Sidhi programs. (variable units—may be repeated)

MVS 490 TM Program Teacher Training—Part I
This first part of the Transcendental Meditation Program Teacher Training Course provides the knowledge and experience of consciousness as the basis of life and prepares one to present this knowledge to others. (variable units) Prerequisites: FOR 100 or FOR 500 and other prerequisites as established by MVED

MVS 491 TM Program Teacher Training—Part II
This course completes the Transcendental Meditation Program Teacher Training Course. It also provides an opportunity for personal development through deeper personal experience of the Unified Field of Natural Law and understanding of the Science of Creative Intelligence. Participation in the course does not automatically qualify a student to graduate as a teacher. (variable units) Prerequisites: MVS 490 and other prerequisites as established by MVED

MVS 492 TM Program Fieldwork Internship
This course allows students to learn and perfect the ability to expound the knowledge for developing consciousness as the Unified Field of Natural Law in the individual and in society. (2–8 units) Prerequisites: MVS 490, prior consent of the Department faculty, approved study plan, and consent of the Academic Standards Committee

MVS 493 TM Program Teaching Internship
In this course, students who have qualified as teachers of the Transcendental Meditation technique and the Science of Creative Intelligence program work full time for at least one year teaching these programs. During this time students must teach the technique to a minimum of 100 people to receive credit. Two units of credit are given for each month students are engaged in this internship. (24 units) Prerequisite: MVS 491

MVS 495 TM Program Governor Training
This course is a rigorous and systematic investigation into the
nature of human consciousness, both in its pure form, as the Unified Field of Natural Law, and in its expressed values as the specific Laws of Nature structuring the activity of the mind, body, and environment. This investigation makes use of (1) a laboratory component of direct personal experience of the Unified Field of Natural Law, (2) a theoretical analysis of laboratory experience, and (3) a historical analysis of that experience by comparing the nature and development of consciousness with ancient records. (up to 24 units—may be repeated) Prerequisites: MVS 491 and other prerequisites as established by MVED

MVS 497 TM Program Research Internship
This course provides the opportunity for extended research in consciousness as a field of all possibilities as well as practical application of Maharishi Vedic Science. Four units of credit are given for each month students are engaged in this internship. (4–24 units) Prerequisite: acceptance by MVED

MVS 498 TM Program Minister Training
This course offers an advanced level of experience and understanding of the science and technology of consciousness. It emphasizes the study and experience of the group dynamics of consciousness. Students are trained in how to fulfill their own desires in a natural way while at the same time spontaneously fulfilling the interests of the whole society. (up to 24 units) Prerequisites: MVS 495 and other prerequisites established by MVED
INTRODUCTION

Mathematics is the science and art of orderliness. It symbolically expresses students’ own common sense—how they quantify order and change in everyday life. Its range embraces all possible patterns of organization that the mind can conceive. Because of this, it is fundamental to almost every aspect of modern life, whether in business, industry, science, economics, medicine, or computer science.

In the mathematics major, students learn to see a greater interconnectedness between themselves, mathematics, and the environment. They may study mathematics to search for deep patterns of orderliness or to understand and use its applications in different areas of society. Whatever students’ preference, this integrated approach shows them that these directions are not separate, but two sides of the same coin.

More and more fields of employment, from high finance to the health professions, require people with increased mathematical and quantitative skills. And every field requires people with the clarity of thinking that comes from studying mathematics. With training in mathematics, students will be well-prepared to meet these needs.

After completing their undergraduate studies, students can progress to graduate studies in pure or applied mathematics or mathematics education, or enter an interesting career involving quantitative skills.

SPECIAL FEATURES

• Students gain an understanding of the parts of mathematics in relation to each other, to themselves, and to the overall body of mathematics. Experience has shown that this integrated approach makes the study of mathematics more relevant, and thus more lively, interesting, and fulfilling for students.

• From their first courses, students begin to appreciate the full range of mathematics, from the deepest foundational levels to real-world applications such as medical imaging, cryptology, fluid flow, bar coding, crystallography, and planetary orbits.

• Students regularly use a sophisticated computer laboratory and the most advanced software to clarify the principles in many of their classes, such as calculus, linear algebra, functions and graphs, geometry, and probability. Also students perform guided mathematical experiments to master concepts that are not normally found in an undergraduate curriculum.

• Students have daily contact with senior faculty in every course. The mathematics department offers a friendly and nurturing environment.

• All faculty have doctorates and are outstanding teachers. One of the faculty has attracted numerous National Science Foundation and other grants, including one to help rewrite the American high school mathematics curriculum. The faculty organize annual mathematics festivals at the University which have attracted hundreds of high school students.

• Students regularly present their own research papers at the annual meeting of the Iowa Section of the Mathematics Association of America. Several students have received Outstanding Student Paper awards.

• Students participate in national and regional mathematics competitions. Two teams recently won Honorable Mentions for their creativity and teamwork in a national Competition in Mathematical Modeling.

• The Math Club meets regularly to help students sharpen their problem-solving abilities and to encourage them to enter mathematical competitions.

• Research shows that educational techniques used at the University produce clearer, more orderly thinking, an obvious necessity for success in mathematics—and for later careers.
DEPARTMENTAL REQUIREMENTS

Entrance Requirements for the Bachelor of Science Degree or the Minor in Mathematics

Before entering the mathematics major, students must successfully complete Functions and Graphs II (MATH 162).

Graduation Requirements for the Bachelor of Science Degree in Mathematics

To graduate with a B.S. in Mathematics, students must successfully complete all requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) As part of these requirements, students must complete 36 units of required course work.

36 units of required courses:
• MATH 267 Geometry
• MATH 272 Discrete Mathematics
• MATH 281 Calculus I
• MATH 282 Calculus II
• MATH 283 Calculus III
• MATH 286 Linear Algebra I
• MATH 353 Probability and Statistics I
• MATH 423 Real Analysis I
• MATH 431 Algebra I

plus one of the following two options:

Option 1 (a total of 44 units):
CS 201 Computer Programming
4 units of courses in physics, chemistry, or electronic engineering

This option is for students who wish to become high school mathematics teachers or enter graduate or professional school in an area related to mathematics.

Option 2 (a total of 64 units):
MATH 308 Ordinary Differential Equations
8 units of mathematics courses numbered 250 or higher
16 units of courses in computer science, biology, chemistry, physics or electronic engineering

This option is for students who wish to pursue graduate study in pure or applied mathematics.

Graduation Requirements for the Minor in Mathematics

To graduate with a minor in mathematics, students must successfully complete one semester-long module (20 units) of mathematics courses numbered 250 or higher.

COURSE DESCRIPTIONS

NOTE: 4-unit courses may be offered for 3 units during shorter blocks.

Undergraduate Courses

MATH 148 Infinity: The Structuring Dynamics of Mathematics

Mathematics takes place in the imagination, in consciousness, unlimited either by finite measuring instruments, by the senses, or even by the feelings. At the same time, mathematics has strict criteria for right knowledge. The power of mathematics lies in bringing infinity out into the finite and making it useful in everyday life—from deciding which bank offers the best return on money, to medical imaging, to designing textiles, to creating a work of art, to putting a man on the moon.

In this course, students explore many different ways in which mathematics expresses, emerges from, and uses infinity and its self-interacting dynamics. They look at the foundation of mathematics in the infinitary processes of set theory, the universe of sets, different sizes of infinity, the continuum and its limit process, sequences and series, infinite replication, and applications of infinity in many areas of life. (2 units) (Distribution Area: Sciences)

MATH 151 Basic Mathematics

Arithmetic is the study of patterns, relations, and operations on numbers. Students study the arithmetic of integers, fractions, decimal fractions, ratios, and percents, with an emphasis on applications. (4 units)

MATH 152 Elementary Algebra

The infinitely flexible language of algebra is used to quantify and model mathematical patterns and relationships. Topics include operations on algebraic expressions, linear equations, the coordinate plane, inequalities, factoring, and simple quadratic equations. (4 units)

MATH 153 Intermediate Algebra

This course extends Elementary Algebra to develop further algebraic models. Students study polynomials, rational expressions, quadratic equations, complex numbers, and graphing in the coordinate plane. (4 units) Prerequisite: MATH 152
MATH 161 Functions and Graphs I Prerequisite: MATH 153
MATH 162 Functions and Graphs II Prerequisite: MATH 161

A mathematical function quantifies the relationship between two related quantities and can be used to model change. Functions and their graphs are essential to all branches of mathematics and their applications. (4 units each)

Topics I: domain and range, average rate of change, graphs, functions (linear, exponential, logarithmic, and quadratic), and applications.

Topics II: trigonometry, algebra of functions, compositions and inverses of functions, functions (trigonometric, power, polynomial, and rational), and applications.

MATH 205 Topics in Maharishi Vedic Mathematics
This course studies the mathematics of Veda, as explained by Maharishi. Topics include mathematical models of the self-referral structure of the Veda, mathematics as the intellectual expression of the structure of pure knowledge, mathematics in the Vedic Literature, and examination of the principles of modern mathematics in the light of Maharishi Vedic Science. (2–4 units—may be repeated)

MATH 266 Geometry for the Artist
Geometry, the study of shape and form, is an essential tool for the visual artist. Topics in this course include symmetry, Euclidean and non-Euclidean geometry, perspective and projective geometry, and fractals. Materials fee: $10 (4 units) No prerequisite

MATH 267 Geometry
Geometry gives an understanding of shape, form, and structure that has many applications in mathematics, science, and technology. This course will study Euclidean and non-Euclidean geometries and their applications. (4 units) Prerequisite: Math 162

MATH 272 Discrete Mathematics
Discrete mathematics, the study of finite processes and discrete phenomena, is essential for computer science. Topics include logic and sets, relations and functions, vertex-edge graphs, recursion, and combinatorics. (4 units) Prerequisite: MATH 162

MATH 281 Calculus I Prerequisite: MATH 162
MATH 282 Calculus II Prerequisite: MATH 281
MATH 283 Calculus III Prerequisite: MATH 286
Calculus, one of the most useful areas of mathematics, is the study of continuous change. It provides the language and concepts used by modern science to quantify the laws of nature and the numerical techniques through which this knowledge is applied to enrich daily life. Using the mathematics computer laboratory, students gain a clear understanding of the fundamental principles of calculus and how they are applied in real-world situations. (4 units each)

Topics I: limits, continuity, derivatives, applications of derivatives, integrals, and the fundamental theorem of calculus.

Topics II: techniques of integration, further applications of derivatives, and applications of integration.

Topics III: infinite series, vector-valued functions and their derivatives, the Jacobian matrix, directional derivatives, gradient, and chain rule.

MATH 286 Linear Algebra I
Linear algebra studies linearity, the simplest form of quantitative relationship and provides a basis for the study of many areas of pure and applied mathematics, as well as key applications in the physical, biological, and social sciences. Topics include systems of linear equations, vectors, vector equations, matrices, determinants, vector spaces, bases, and linear transformations. (4 units) Prerequisite: MATH 282

MATH 304 Calculus IV
This course extends the calculus of a function of a single real variable to functions of several real variables. Topics include maxima and minima, curvilinear coordinates, line integrals, multiple integrals, change of variables, gradient fields, surface integrals, and the theorems of Green, Stokes, and Gauss. (4 units) Prerequisite: MATH 283

MATH 307 Linear Algebra II
This course deepens and extends many of the topics covered in Linear Algebra I; additional topics include the Cayley-Hamilton theorem, Jordan canonical form, inner-product spaces, orthogonality, and spectral theory. (4 units) Prerequisite: MATH 286

MATH 308 Ordinary Differential Equations
The most concise mathematical expression that describes a continuously changing physical system is a differential equation, which uses derivatives to quantify all possible states of an evolving system in one equation. Topics include first-order differential equations, second-order linear differential equations, power-series solutions, Laplace transforms, numerical
methods of solution, and systems of differential equations. (4 units) Prerequisite: MATH 283

MATH 310 Mathematical Problem Solving
Problem solving is a fundamental—and exciting—part of mathematics. In this course, students develop and practice many methods and techniques of mathematical problem solving. (4 units) Prerequisite: MATH 282

MATH 315 Special Topics in Mathematics
In this course students investigate a specialized area of mathematics in depth. Topics will vary. (4 units—may be repeated) Prerequisite: consent of the instructor

MATH 318 Complex Analysis
Complex analysis is one of the great achievements of modern mathematics, providing an extension of the real number line to a two-dimensional plane of numbers with surprising applications throughout most areas of mathematics. Topics include analytic functions, Cauchy-Riemann equations, contour integration, Cauchy’s Theorem and integral formulas, power series, residue theorem, and conformal mappings. (4 units) Prerequisite: MATH 304

MATH 351 Probability
Probability provides precise descriptions of the laws underlying random events, with applications in quantum physics, statistics, computer science, and control theory. Topics include permutations and combinations, conditional probability, random variables, discrete and continuous distributions, expectation, and the central limit theorem. (4 units) Prerequisite: MATH 282

MATH 353 Probability and Statistics 1
Probability provides precise mathematical descriptions of the laws underlying random events, and statistics uses this mathematical theory to make inferences from empirical data and assess their reliability. Topics include probability, random variables, probability distributions, mean and standard deviation, central limit theorem, tests of hypotheses, linear regression, and correlation. (4 units) Prerequisite: MATH 162

MATH 354 Probability and Statistics 2
In this course, the topics of Probability and Statistics 1 are studied more deeply, with emphasis on their mathematical foundations. (4 units) Prerequisites: MATH 353 and MATH 283

MATH 370 Mathematical Logic
Mathematical logic is the mathematical description of the structure and function of the symbolic language of mathematics. This course develops a rigorous symbolic language, suitable for expressing all mathematical concepts, demonstrates the soundness and completeness of the language, and shows the inherent limitations of such formal systems indicated by Gödel’s Incompleteness Theorems. (4 units) Prerequisite: consent of the instructor

MATH 401 Practicum in Teaching College Mathematics
Under the direction of a senior faculty member, students prepare and give lectures, lead tutorial sessions, and write and grade quizzes and exams for a college-level mathematics course. (4 units) Prerequisite: consent of the instructor

MATH 402 Undergraduate Research in Mathematics
This course provides an opportunity for students to do original research under the supervision of a faculty member. (1 unit) Prerequisite: consent of the instructor

MATH 410 Seminar in Applied Mathematics I
MATH 411 Seminar in Applied Mathematics II
In these courses, students apply the theoretical knowledge they have gained in previous mathematics courses to an applied problem taken from a real-life situation in business or industry. Problems differ from year to year. (4 units each—may be repeated) Prerequisite: consent of the instructor

MATH 420 Numerical Analysis
Scientific and engineering applications of computers require advanced numerical techniques of manipulating and solving complex systems of equations with great efficiency and minimum error. Topics include numerical solutions of systems of linear equations, curve fitting, interpolation, numerical integration, solution of algebraic equations, and error analysis. (4 units) Prerequisite: MATH 282

MATH 423 Real Analysis I
Prerequisite: MATH 283
MATH 424 Real Analysis II
Prerequisite: MATH 423
Analysis is the mathematically rigorous development of calculus based on the theory of infinite sets. The analysis sequence begins with the application of the infinitary methods of set theory to construct the uncountable continuum of real numbers, and then shows how the basic principles of calculus can be logically unfolded from a set-theoretic understanding of the continuum. (4 units each)

Topics I: infinite sets, completeness, open sets, closed sets,
compact sets, connected sets, and continuous functions.

Topics II: properties of continuous functions, differentiation, mean value theorem, Riemann integral, numerical sequences and series.

MATH 431 Algebra I Prerequisite: MATH 286
MATH 432 Algebra II Prerequisite: MATH 431
Algebra is the study of sets of elements together with operations or relations as well as the structure-preserving transformations between these sets. (4 units each)

Topics I: groups and subgroups, quotient groups, group homomorphisms, direct sum, kernel, image, Noether isomorphism theorems, and the structure of finitely generated abelian groups.

Topics II: rings, integral domains, fields, principal ideal domains, unique factorization domains, modules and sub-modules, tensor products, and exact sequences.

MATH 434 Set Theory
Set theory provides a unified foundation for the diverse theories of modern mathematics based upon the single concept of a set. Topics include axioms of set theory, ordinals, transfinite induction, the universe of sets, cardinal arithmetic, large cardinals, and independence results. (4 units) Prerequisite: MATH 370

MATH 436 Foundations of Mathematics
This course introduces recent developments in foundational areas that have provided important new insights into the structure of the foundations of mathematics. Topics covered in the course vary from year to year. (4 units) Prerequisite: MATH 370

MATH 460 Topics in Set Theory
Topics vary from year to year and may include large cardinals and elementary embeddings; applications of set theory in topology and analysis; applications of set theory in algebra; introduction to the theory of forcing; Gödel’s constructible universe; descriptive set theory. (4 units) Prerequisite: consent of the instructor

MATH 466 Topology
Topology shows how all mathematical aspects of shape, structure, and form can be expressed in terms of set theory. Students study topologies and their properties of separation, connectedness and compactness, topological mappings, and the fundamental group of a topological space. (4 units) Prerequisites: MATH 423 and MATH 431

MATH 485 Theory of Computation
Students focus on formal abstract models of computation and capabilities of abstract machines in relation to their increasing ability to recognize more general classes of formal languages. Topics include formal grammars, finite-state machines, equivalence of finite-state machines, right-linear and left-linear grammars, pushdown automata, context-free languages, Turing machines, unsolvable problems, and recursive functions. (4 units) Prerequisite: MATH 272

MATH 499 Directed Study
(variable units) Prerequisite: consent of the Department faculty
Maharishi University of Management offers a Bachelor of Science degree program in physics. The rigor of this program, combined with the development of applied skills, enables a graduate in physics to excel in the most demanding areas of study or employment. The B.S. degree in physics prepares students to become leaders in this field by providing them with strong theoretical and applied training for graduate studies. It also prepares them for employment in various areas of physics and engineering.

SPECIAL FEATURES

• As physics majors, students enjoy a comprehensive program of physics and mathematics with courses designed to develop a high level of critical thinking ability, problem-solving skills, and experimental competence in the fundamental areas of classical and modern physics.
• The physics major offers two options: 1) a B.S. degree in physics and 2) a B.A. degree in physics with a lesser course requirement.
• The physics minor provides a calculus-based survey of the fundamental branches of classical and modern physics, enabling students in other disciplines to appreciate and enliven the connection of physical law to their own disciplines, while gaining some valuable training in scientific experimentation and problem solving.
• The experience and the study of human consciousness and of its higher states is an integral part of the physics curriculum at Maharishi University of Management. The most creative physicists have always emphasized human consciousness as the foundation for the scientific method used in physics. More importantly, during the past thirty years, theoretical physicists have reached several decisive milestones toward a complete unified field theory of all the known force and matter fields of nature. The physicists at Maharishi University of Management have discussed and proposed that this complete unified field at the basis of the whole universe is the same as the Unified Field of Consciousness, the experience of which has been recorded by ancient Vedic literature and revived through the advanced technologies of consciousness, the Transcendental Meditation and TM-Sidhi programs.

DEPARTMENTAL REQUIREMENTS

Entrance Requirements for Physics Majors

In compliance with professional accreditation standards, we require that students be formally accepted into the major. As a pre-requisite for taking further courses in either department, students of physics must formally request admission into the major. Acceptance will depend on performance in the following three courses: Phys 210, Math 281, and Math 282. The Physics faculty may also review other admission materials previously submitted for general admission to the University.

Graduation Requirements for the Bachelor of Science Degree in Physics

To graduate with a B.S. in Physics, students must successfully complete all general requirements for the bachelor’s degree. (Please refer to “Degree Requirements” in “Academic Policies.”) These same requirements also qualify students for a minor in Electronics.

To graduate with a major in physics, students must successfully complete an approved program of at least 108 units chosen from any of the following courses. Each course is 4 units unless otherwise noted:
Graduation Requirements for the Bachelor of Arts Degree in Physics

To graduate with a B.A. degree in Physics, students must successfully complete all general requirements for the bachelor's degree. (Please refer to “Degree Requirements” in “Academic Policies.”). These same requirements also qualify students for a minor in

To graduate with such a degree, students must successfully complete an approved program of approximately 72 units plus a specialization in some other discipline, chosen by the student. Course requirements for the B.A. should be chosen from the following (each course is 4 units unless otherwise noted):

- MATH 281 Calculus I
- MATH 282 Calculus II
- MATH 283 Calculus III
- MATH 286 Linear Algebra I
- MATH 304 Calculus IV
- MATH 308 Ordinary Differential Equations
- PHYS 210 Introduction to Classical Mechanics
- PHYS 230 Introduction to Electromagnetism
- PHYS 244 Introduction to Harmonics, Waves, and Optics
- PHYS 250 Introduction to Modern Physics
- PHYS 270 Introduction to Astronomy
- PHYS 313 Classical Mechanics I
- PHYS 314 Classical Mechanics II
- PHYS 350 Electricity, Magnetism, and Optics I
- PHYS 351 Electricity, Magnetism, and Optics II
- PHYS 360 Quantum Mechanics I
- PHYS 361 Quantum Mechanics II
- PHYS 370 Thermodynamics and Statistical Mechanics I
- PHYS 371 Thermodynamics and Statistical Mechanics II
- PHYS 380 Methods of Experimental Physics I
- PHYS 381 Methods of Experimental Physics II
- EE 310 Circuit Theory
- EE 315 Electron Devices I
- EE 316 Electron Devices II
- EE 330 Analog Integrated Circuits
- EE 335 Digital Integrated Circuits
- EE 420 Semiconductor Technology I
- EE 430 Analog Communications Systems

Graduation Requirements for the Minor in Physics or Electronics

To graduate with a minor in physics, students must successfully complete an approved selection of at least 38 units of course work as follows. These same requirements also qualify students for the minor in electronics (all courses 4 units unless noted):

- MATH 281 Calculus I
- MATH 282 Calculus II
- PHYS 210 Introduction to Classical Mechanics
- PHYS 230 Introduction to Electromagnetism
- PHYS 244 Introduction to Harmonics, Waves, and Optics
- PHYS 250 Introduction to Modern Physics
- PHYS 270 Introduction to Astronomy
- PHYS 380 Methods of Experimental Physics I
- EE 310 Circuit Theory
- EE 315 Electron Devices I
- EE 316 Electron Devices II
- EE 330 Analog Integrated Circuits
- EE 335 Digital Integrated Circuits
- EE 420 Semiconductor Technology I

178
PHYS 110 Introduction to Unified Field Theories: Locating the Total Potential of Natural Law in Physics
The course gives a deep and non-mathematical understanding of the differences between classical and quantum physics. It explains the meaning and mechanics of unification and symmetry, and the main concepts of unified quantum field theories and superstring theory. It shows that at the basis of the physical world lies a complete unified field, a self-interacting entity from which all particles and forces arise through the process of spontaneous symmetry breaking. The course gives students the experience and the understanding of the interconnectedness between the laws of physics, the universe and themselves. (3 units)

PHYS 210 Introduction to Classical Mechanics: Integration of Silence and Activity
Students study the motion of classical particles and extended bodies in space-time. In addition, the basic methods for testing theories through proper scientific experimentation and observations are emphasized. Topics include kinematics, dynamics, gravitation, and conservation laws. (4 units) Prerequisite: MATH 281

PHYS 224 Introduction: Solids, Fluids, and Thermodynamics: The Organizing Power of Natural Law
This course covers the general features of the behavior of solids and fluids, and examines the field of thermodynamics. Students learn to experiment and apply principles related to the laws of thermodynamics, such as how solids and fluids respond to changes in pressure and temperature in light of Charles’ and Boyle’s laws and Bernoulli’s principle. (4 units) Prerequisites: PHYS 210 and MATH 282

PHYS 230 Introduction to Electromagnetism: The Field of Atma
Students are introduced to the concrete and observable levels of classical electromagnetic theory. In the laboratory they directly investigate electrostatic and magnetic fields, electric currents, and electromagnetic interactions. Topics include Coulomb’s, Gauss’, Ampere’s, and Faraday’s laws along with Maxwell’s equations. (4 units) Prerequisite: PHYS 210

PHYS 244 Introduction to Harmonics, Waves, and Optics: Waves of the Self within Itself
This course begins with mechanical aspects of harmonics, waves, and sound. It then combines these principles with those of the electromagnetic field for the investigation of geometrical and physical optics. Topics include simple harmonic motion, interference, polarization, and optical phenomena related to lenses and mirrors. (4 units) Prerequisite: PHYS 230

PHYS 250 Introduction to Modern Physics I: The Discovery of the Unified Field
Quantum mechanics and Einstein’s theory of relativity are the major themes of this course. Topics include special relativity, the birth of quantum mechanics, Schrödinger’s equation, wave mechanics of one-dimensional problems, and the hydrogen atom. Students perform laboratory experiments selected from the above topics. (4 units) Prerequisite: PHYS 244

PHYS 260 Introduction to Modern Physics II: The Discovery of the Unified Field
This course studies further applications of quantum mechanics to atoms, molecules, solids, nuclei, and elementary particles. (4 units) Prerequisite: PHYS 250

PHYS 270 Introduction to Astronomy: The Unified Field as the Source of Creation
In this course students learn about sky maps, astronomical observation and the whole universe. Topics include: history of astronomy, sky charts, telescopes, spectroscopy, sun and planets, stellar formation and evolution, black holes, galaxies, cosmology, and the early universe. (4 units) Prerequisite: PHYS 250

PHYS 313 Classical Mechanics I: Atma as the Source of All the Laws of Nature
Students explore the formal structure of Newtonian mechanics with application to single-particle systems. Topics include kinematics, dynamics, the harmonic oscillator, three-dimensional motion, constraints, non-inertial systems, central force problems, and scattering. (4 units) Prerequisites: PHYS 210, MATH 304, and MATH 308

PHYS 314 Classical Mechanics II: Atma as the Source of All the Laws of Nature
This course extends the principles of classical mechanics to many-particle systems, introducing the concept of generalized coordinates and the Lagrangian formulation. Topics include center-of-mass and relative coordinates, collisions, rigid body
dynamics, Lagrangian mechanics and Hamilton’s principle, Hamilton’s equations, oscillating systems and normal coordinates, continuous systems, and the wave equation. (4 units) Prerequisite: PHYS 313

PHYS 350 Electricity, Magnetism, and Optics I: The Flow of Atma from Source to Source Prerequisites: PHYS 210, MATH 304, and MATH 308

PHYS 351 Electricity, Magnetism, and Optics II: The Flow of Atma from Source to Source Prerequisite: PHYS 350

PHYS 352 Electricity, Magnetism, and Optics III: The Flow of Atma from Source to Source Prerequisite: PHYS 351

Students apply the calculus of vector fields to the study of electromagnetic fields and their sources. Maxwell’s equations and their application to relativistic and non-relativistic phenomena are examined in detail, along with the principles of physical optics. (4 units each)

Topics I: a review of vector-calculus, electrostatics, solution of Laplace’s and Poisson’s equations, multipole expansions, and dielectric media.

Topics II: magnetostatics, magnetic media, electrodynamics and Maxwell’s equations, potentials and gauge transformations, conservation laws, special relativity, and relativistic electrodynamics.

Topics III: electromagnetic waves, radiation from moving charges and currents, waves in dielectric and conducting media, dispersion, reflection and refraction, interference, and diffraction.

PHYS 360 Quantum Mechanics I: The Sequential Unfolding of Veda Prerequisites: PHYS 314 and MATH 286

PHYS 361 Quantum Mechanics II: The Sequential Unfolding of Veda Prerequisite: PHYS 360

PHYS 362 Quantum Mechanics III: The Sequential Unfolding of Veda Prerequisite: PHYS 361

Topics I: wave mechanics, one-dimensional potential, operator methods and Dirac formulation, the harmonic oscillator, Schrödinger and Heisenberg representations, the classical limit, and the WKB approximation. (4 units)

Topics II: identical particles, quantum paradoxes and interpretations, angular momentum, central potentials and the hydrogen atom, electrons in electromagnetic fields, spin and general two-state systems, addition of angular momenta, the EPR paradox and Bell’s theorem. (4 units)

Topics III: perturbation theory, the variational method, fine structure, atoms and molecules, emission and absorption of radiation scattering theory, density matrices, and measurement theory. (4 units)

PHYS 370 Thermodynamics and Statistical Mechanics I: The Invincibility of Evolution Prerequisite: PHYS 224

PHYS 371 Thermodynamics and Statistical Mechanics II: The Invincibility of Evolution Prerequisites: PHYS 250 and PHYS 370

Thermodynamics studies the transformations of energy in macroscopic systems. It is chiefly concerned with the general laws governing the transformation of heat into work and the effect of these laws on the thermal properties of bulk matter. Statistical mechanics derives these laws, as well as the more fundamental properties of bulk matter, from the dynamical behavior of underlying microscopic constituents. (4 units each)

Topics I: state variables, internal energy, free energy, entropy, temperature, the laws of thermodynamics, heat engines, chemical reactions, and nonequilibrium thermodynamics.

Topics II: the fundamental theorems of statistical mechanics, the statistical basis of thermodynamics, ensemble theory, classical and quantum ideal gases, phase transitions, and kinetic theory.

PHYS 380 Methods of Experimental Physics I: Experience is the Basis of Understanding Prerequisite: PHYS 250

PHYS 381 Methods of Experimental Physics II: Experience is the Basis of Understanding Prerequisite: PHYS 250

These courses focus on experimental research methods, giving students experience in designing and performing laboratory experiments. (4 units each)

PHYS 390 Research in Physics: Applying Natural law

In this course, students integrate and express the knowledge they have gained in the major by carrying out research under the guidance of Physics faculty. (4 units—may be repeated) Prerequisite: consent of the Department faculty
HUM 230 Rotating University in Greece: Conceptions of the Good Life in Greek Thought
This course takes place on the Greek mainland, the Greek islands, and a cruise ship on the Aegean Sea. It combines an introduction to Greek culture and history with a specific focus on virtue and the good life in Greek thought. Students tour some of the most famous historical sites in Greece—the Parthenon in Athens, the Oracle at Delphi, the palaces of the Minoan civilization on Crete—along with an opportunity to experience the charm of contemporary Greek towns and the beauty of Greek beaches. For four days, the course is on a cruise ship, which visits a number of famous Greek sites from antiquity.

The intellectual thought of ancient Greece is very rich, serving as the source of much of the Western intellectual tradition. We read original works of some of the greatest Greek writers and thinkers, from the perspective of understanding the nature of the good life. We will also discover the profound parallels between ancient Greek thought and the insights of Maharishi Vedic Science. Both intellectually and experientially, this course provides an exploration of the good life. (4-unit course—2 units of General Education credit) (Note: The content of this course is different from “The Good Life in Western Philosophy.”)

FA 229 Rotating University in Italy: Italian Art and Culture
In this course, students visit the cultural centers of Italy, viewing Italian painting, sculpture and architecture. In addition, students learn beginning Italian, which they can use while experiencing the rich culture of Italy. We may visit several of the following historical locations: Lake Como, with trips to Bellagio, the Villa Balbianello, and the Villa Carlotta; Milan, home of the Last Supper by Leonardo da Vinci, the Gothic Duomo, La Scala opera house, and the Galleria Vittorio Emmanuelle II; Venice, where students take gondola rides down the grand canal and visit the Basilica di San Marco, the Accademia, and the Peggy Guggenheim Museum of Modern Art; Florence, the cradle of the Renaissance, where students see the Duomo, the David by Michelangelo, the Convento di San Marco, and the Uffizi Gallery; Rome, where the group visits the Sistine Chapel, St. Peter’s Basilica, and the Piazza Navona. Students also visit smaller Tuscan villages, such as San Gimignano, Siena, and the Cinque Terre, overlooking the Mediterranean Sea.

The focus of the course is on the Renaissance, the cultural and artistic awakening of the fifteenth and early sixteenth centuries, which is often thought to form the foundation for modern Western culture. We study the art of the great masters of the Renaissance, including Michelangelo Buonarroti, Leonardo da Vinci, Raphael, Botticelli, Filippo Lippi, Brunelleschi, Fra Angelico, Giberti, Giotto, and Donatello. (4 units)

ESS 325: Rotating University in Australia: Leadership in Adventure Sport
This is a leadership training course in Australia and all students will take an active part in the leadership of the course. We actively interact with local cultures and ecosystems. We will travel by a combination of transportation ranging from bicycle, car, train, bus, to boat. Every 2–3 days we will stop for another adventure such as surfing, snorkel diving, hiking, mountain biking, sea kayaking, white water kayaking / rafting. This will be a self-sufficient trip where we will tent and prepare our own food as we travel. Australia is a large country so we will travel by motorized transportation on many occasions as we move between ecosystems. (4 units)
ESS 325: Rotating University in New Zealand: Leadership in Adventure Sport
New Zealand is the setting of this leadership training course, and follows the same format and activities as the Australian excursion (see above), except that New Zealand’s size makes this trip a compact adventure lover’s paradise, so we will travel by bicycle as much as possible. (4 units)

LIT 410 Rotating University in Italy: Travel Writing
From Mark Twain to John Steinbeck, some of the world’s most admired writers have found inspiration in the topic of travel. In this course students learn the conventions of travel writing as they visit the following locations in Italy: Lake Como, with trips to Bellagio, the Villa Balbianello, and the Villa Carlotta; Milan, home of the Last Supper by Leonardo da Vinci, the Gothic Duomo, La Scala opera house, and the Galleria Vittorio Emmanuele II; Venice, where students take gondola rides down the grand canal and visit the Basilica di San Marco, the Accademia, and the Peggy Guggenheim Museum of Modern Art; Florence, the cradle of the Renaissance, where students see the Duomo, the David by Michelangelo, the Convento di San Marco, and the Uffizi Gallery; Rome, where students visit the Sistine Chapel, St. Peter’s Basilica, and the Piazza Navona. Students also visit smaller Tuscan villages, such as San Gimignano, Siena, and the Cinque Terre, overlooking the Mediterranean Sea.

Course work includes reading examples of popular travel writing on Italy. By analyzing the work of top travel writers and through in-class writing workshops, students become familiar with techniques of travel writing and learn to apply them in their own writing. As students visit cultural centers in Lake Como, Venice, Florence, Rome, Tuscany, and the Cinque Terra on the Mediterranean Sea, they record their personal observations of Italian people, places and daily life in a travel journal. The course culminates in the writing of a personal travel essay. (4 units)

MVS 485 Rotating University in India—Land of the Veda: The Blossoming of Total Knowledge for Permanent World Peace
This course explores the nature of Total Knowledge and the sequential unfoldment of Maharishi’s teaching, from his original inspiration to spiritually regenerate the whole world to current global programs to create prevention-oriented, problem-free administration and permanent world peace. Students visit places in India where Maharishi himself taught or established important centers of learning. They also enjoy Maharishi’s taped lectures, Sanskrit recitation, and presentations by leaders of the Indian Transcendental Meditation movement. Sites visited in recent courses include Mumbai, Thiruvananthapuram, Kanyakumari, Chennai, Varanasi, Allahabad, Bhopal, Haridwar, Rishikesh, Maharishi Nagar, and Delhi. (4 units)

MVS 485 Rotating University in Switzerland: Reading the Vedic Literature
In this course, students read the Vedic Literature in Sanskrit and view videotapes by Maharishi on the Vedic Literature from the unique videotape collection available only in Seelisberg. Students live in Maharishi European Research University, located in the Swiss Alps high above Lake Luzern. Formal class is held in the morning, and in the afternoon students take group excursions to experience the beauty of Switzerland. Boat rides on Lake Luzern include visits to Weggis, Vitznau, Brunnen, Luzern, Herchenstein, Stans, Buochs, and Engelberg. Students also climb alpine paths around the lake and take lifts to famous peaks, such as Rigi, Pilatus, Mount Titlis, and Stanserhorn. (4 units)
INTRODUCTION

The Department of Continuing Education offers courses of study for adults who want to continue growing intellectually and creatively, or to gain greater practical expertise, either on-campus but outside of full-time undergraduate or graduate degree programs or off-campus through individual distance education. Through a variety of course formats, our programs address diverse interests and situations of adult learners.

Adult students may participate in on-campus, noncredit evening and weekend courses in a wide range of subjects such as the Internet, computer graphics, Sanskrit, and watercolor painting. They may also select from full-time classes in session (e.g. business, art, computer science), choosing classes on a course-by-course basis. For those who wish to study from home, correspondence or distance programs are available.

The Department arranges credit or noncredit options for those who wish to take courses in the summer. This program is particularly valuable for those who are considering becoming full-time students in the future and who are eager to sample the rich educational programs which the University offers.

Courses from the Department of Continuing Education meet the needs of those who want to develop further technical and occupational expertise, either to achieve more advanced levels in their existing profession or to qualify for a new profession. Noncredit courses provide knowledge for fulfillment—education experiences structured to take advantage of the flexibility of a shorter format ideal for the adult learner. Adults with full-time work commitments can continue their education and explore their interests while they maintain their regular responsibilities.

The Institute of Maharishi Gandharva Veda Music, which is administered through the Department, offers courses, private lessons, and concerts of Maharishi Gandharva Veda music for students to explore and enjoy this ancient tradition of Vedic music.

On-Campus Credit Courses

Those who wish to take credit courses as non-degree-seeking students may do so by applying to and registering through the Department. In this way, one may take a regular undergraduate or graduate course without enrolling for an entire semester.

Two policies guide credit courses taken through the Department of Continuing Education.

1) The Science of Creative Intelligence (SCI) course (CC 100 or FOR 500) is the first course our degree-seeking students take when they enter the University. When taking credit-bearing courses through Continuing Education, it is recommended that students take this course first. However, students may take a maximum of eight units of course work before they are required to enroll in the SCI course.

2) A maximum of 20 units taken through Continuing Education may later be applied to a degree program.

Adult learners can also earn credit through directed study, in which they work individually with a faculty advisor. Although we encourage all adult learners to take regularly scheduled courses, in some cases this may not be possible.

Registering for credit courses is simple and easy. It is best to apply as early as possible. At the latest, applications should be submitted one week before the start of the class. Individuals can enroll and live off campus or live on campus by participating in the Super Radiance in Residence (SRR) program.

Students are automatically enrolled in the group practice of the Transcendental Meditation program (RC 320) or the TM-Sidhi program (RC 332) for each academic block they are enrolled in class. For details of these courses, please refer to the “College of Maharishi Vedic Science” section of this Bulletin.

Tuition, Withdrawals, and Refunds for Credit Courses

The tuition for both undergraduate and graduate courses for 2003–04 is $350 per unit.

Withdrawal Policy for On-Campus Credit-Bearing Courses

1) To withdraw from the course before it has started, come to the Department of Continuing Education to fill out a form.

2) To withdraw after a course has started, fill out a withdrawal form together with the course instructor within 3 days.
of the last day of class attended. Please give complete information: the reason for withdrawal. After completing the form, the original goes to the Registrar’s Office for filing in your permanent record; one copy goes to you; and one copy to your course instructor. Your instructor will record a grade of W on the grade sheet for the course.

3) It is your responsibility to inform your instructor of your intention to withdraw within 3 days of the last day of class attendance. If you are absent longer than 3 days, the instructor must assign a grade of NC.

Refund Policy for On-Campus Credit-Bearing Courses

If it becomes necessary to withdraw from a course, follow these procedures to apply for a refund:

1) Be sure to complete a course withdrawal form with your instructor within 3 days of the last day of attendance. Refunds are based on the date that the withdrawal form is completed with your course instructor.

2) File a request for refund at the time of withdrawal from a course. These forms are available from the Department. Refunds are given only to those who officially withdraw from a course.

Refunds are calculated according to the following policies:

1) If students cancel registration on or before the first day of class, a full refund is given, minus a fee of $35. Students need to file a request for refund with the Department of Continuing Education on or before the first day of class.

2) If students officially withdraw from a course before 25% of the class is completed, they are eligible for a 50% refund. They need to file a request for refund with the Department of Continuing Education at the time of withdrawal.

3) If students withdraw from a course after 25% of the class is completed, there is no refund of tuition.

On-Campus Noncredit Courses

The Department of Continuing Education also offers a wide variety of educational programs that do not carry academic credit although in some cases these courses can be used to fulfill the requirements for in-service and professional credit. These programs are designed to meet educational demands as they arise. Examples of courses offered include:

- Maharishi Vedic Science and Technology—Consciousness-Based education program, Sanskrit, and Vedic Management
- Maharishi Gandharva Veda music
- Exercise and sports
- Art—watercolor, sculpture, and ceramics
- Desktop publishing and computer use—Introduction to Quark XPress, Adobe Photoshop, and the Internet
- Digital Media—Softimage and Topaz

Maharishi Vedic University in Iowa

Maharishi Vedic University and Maharishi Ayur-Veda University courses are offered in Iowa through the Department of Continuing Education. These noncredit courses include:

- Maharishi Vedic Approach to Health: Self-Pulse Reading Course
- Maharishi Vedic Approach to Health: A Course on Diet, Digestion, and Nutrition
- Maharishi Vedic Approach to Health: A Course on Prevention
- Maharishi Vedic Approach to Health: A First Course on Yoga Exercises
- Successful Management—Gaining Support of Natural Law
- Higher States of Consciousness
- Philosophy of Action—Success without Stress
- Discovery of Veda and the Vedic Literature in Human Physiology
- Crime Prevention and Rehabilitation
OTHER PROGRAMS

Researcher-in-Residence

Students who are working on an M.F.A. portfolio or who are in the research or writing stage of a doctoral dissertation at another university and wish to do research under the guidance of a member of the faculty may apply to the Researcher-in-Residence program. Applicants should submit an application along with a written research proposal and a letter from a faculty member who has agreed to supervise the research. The research proposal should provide the details of the proposed activity for the full period of enrollment. Final acceptance to this program is based upon approval of the application by the Dean of Faculty. Students may participate in this program for up to one year.

Graduate Fellowship Program

The graduate fellowship program is a non-degree program available to individuals who already hold a baccalaureate degree and who wish to pursue full-time study for a period of at least six months in a field for which they are qualified and have shown a strong interest. The applicant must be approved by a sponsoring academic department and by the graduate school prior to acceptance. The program of study must have clearly delineated objectives, and the methods for accomplishing the objectives and for evaluating the performance of the student must be well defined. The study may take place either on or off the campus, but should encompass at least 35 hours of study per week. The graduate fellowship program is generally offered in conjunction with an institution or agency sponsoring the study.

Super Radiance in Residence Program

This program is designed to allow individuals the opportunity to take part in both the University’s Super Radiance program and a special evening series entitled “Knowledge for Enlightenment.” Participants in the Super Radiance in Residence (SRR) program live in University housing, either in the dormitories or in Utopia Park, a mobile home park at the north end of campus. They are required to participate in the Super Radiance program sessions and are entitled to attend the “Knowledge for Enlightenment” program series given each evening.

Room and board costs vary with the type of housing chosen. Please contact the Office of Admissions for further details.

Research in Consciousness Program

This credit program is available to everyone in the community who participates daily in the Transcendental Meditation and TM-Sidhi programs. Students in this program participate in the Super Radiance program sessions and are entitled to attend the “Knowledge for Enlightenment” program series given each evening.

First Year Only Program

Prospective students who want to take advantage of the University’s unique approach to interdisciplinary study can do so through the “First Year Only Program.” This individualized program offers the advantages of a Maharishi University of Management education to all those who do not wish to enroll as degree-seeking students. Credit is generally transferable to other universities.

Students in this special program generally begin their studies with the Science of Creative Intelligence course (FOR 100) which introduces the true interdisciplinary basis for studying all the fields of knowledge—located in the inner intelligence of the knower. As they study a wide range of fields—from business to art to computer science—students feel at home with every subject as an expression of their own intelligence.

Junior Year Program

Students enrolled in degree programs at other universities are invited to attend Maharishi University of Management for their junior year and add the holistic benefits of the University’s program to their educational experience. Individually tailored, the Junior Year program generally includes some first-year courses, course work in any of the upper-division major programs, the Science of Creative Intelligence course (FOR 100), and one Forest Academy. A half-year program is available for those who cannot stay for a full academic year.
Institute of Science, Technology and Public Policy

The Institute of Science, Technology and Public Policy has been established to identify, evaluate, and recommend to government and the public, new approaches to raising the nation above the reach of problems. The Institute publicly promotes the use of life-supporting, scientifically proven programs and technologies through disseminating research; organizing seminars, conferences, and forums for public education; and formulating governmental policies pertaining to every area of public concern. A central focus of the Institute is research of promising new programs and technologies made possible through the latest scientific knowledge of Natural Law, including the discovery of the Constitution of the Universe brought to light by Maharishi Vedic Science.

Director: John S. Hagelin, Ph.D.

Institute of Maharishi Gandharva Veda Music

The Institute of Maharishi Gandharva Veda Music provides theoretical and practical knowledge of Maharishi Gandharva Veda music. An important aspect of the Institute is to coordinate scientific research on the influence of Maharishi Gandharva Veda music in creating a harmonizing and balancing influence in the areas of consciousness, behavior, physiology, and the environment. The Institute offers courses at many different levels in the science and art of Maharishi Gandharva Veda music, including children’s courses and non-credit Continuing Education courses, as well as concerts and seminars to share the experience and knowledge of Maharishi Gandharva Veda music.

Director: Isabelle Matzkin, M.A.

Institute of Maharishi Sthapatya Veda Design

The Institute of Maharishi Sthapatya Veda Design is a center of research and a source of information on Sthapatya Veda design as brought to light by His Holiness Maharishi Mahesh Yogi. Maharishi Sthapatya Veda—the science of building in accord with Natural Law—is the knowledge of how to create a living or working environment in which the individual always enjoys the full support of the evolutionary power of Nature. The Institute coordinates research on the relation of Maharishi Sthapatya Veda design to modern disciplines of environmental design including city planning, architecture, and design (landscape, interior, furniture, and industrial), and offers courses on the design, construction, and maintenance of ideal environments.

Director: Jonathan Lipman, B.A.

Institute for Research on Higher States of Consciousness

The world’s critical problems—political violence, environmental degradation, economic failure, substance abuse, crime—ultimately have their source in the limited use of human potential. Unfoldment of the mechanics of transcending by His Holiness Maharishi Mahesh Yogi has provided the technologies for systematically developing higher states of consciousness, the natural end-stage of full human potential. The purpose of the Institute for Research on Higher States of Consciousness is to verify the existence of higher states of consciousness and establish their practical consequences for improving the life of the individual and society. The Institute provides an interdisciplinary and intercultural forum for researchers and scholars to: a) share knowledge, and b) collaborate in research and applied programs.

Director: Victoria Kurth Alexander, J.D., LL.M.

Maharishi University of Management Agriculture Institute

The Maharishi University of Management Agriculture Institute organizes research and assistance projects in agriculture and environmental science. It also provides knowledge of Maharishi Vedic Science to scientists interested in applying this knowledge to solve contemporary environmental and agricultural problems and to restructure the patterns of biological and ecological activity. The Institute cooperates with other institutes affiliated with the University, and has working relationships with scientists at other universities and in state and local government agencies. Research interests of Institute faculty include the functions of soil animals in maintaining soil structure and fertility, effects of soil algae on agricultural productivity, and testing of various techniques of nontoxic agriculture and horticulture.

Co-Directors: John Fagan, Ph.D., and James Schaefer, B.S.

Institute of World Peace

The individual is the basic unit of world peace. Every
thought and action of each individual contributes to the harmony or unrest of all other individuals in the world. Harmony in the individual arises from the transcendental field of awareness, underlying all thought and action, within every individual to experience, regardless of culture or national affiliation. Turbulence in society, including war, terrorism, and crime, results from the lack of attunement of individuals with their own unbounded nature. The Institute of World Peace offers practical programs for promoting progress and fulfillment for the individual and each level of society. The Institute facilitates peace studies, peace research, and peace conferences at Maharishi University of Management, and promotes exchanges with peace programs at other universities, institutes and organizations. Please view these links for further information: http://www.mum.edu/worldpeace/ and http://www.mum.edu/m_effect/index.html.

Director: Rachel S. Goodman, Ph.D.

Center for Educational Excellence

The mission of the Center for Educational Excellence is to promote and support efforts to enhance instruction at Maharishi University of Management. In pursuit of this mission, the Center has established several overlapping goals. We strive to:
- Provide opportunities for teaching faculty to discuss students’ learning and ways to enhance it in their classrooms.
- Support faculty as they implement their ideas for improving students’ learning, including thorough use of Maharishi’s Principles of Ideal Teaching.
- Bring research about teaching to the attention of the University community.
- Encourage involvement in the scholarship of teaching and research on learning.
- Offer course development assistance at any stage: planning, teaching, evaluating.
- Foster instructional innovation.
- Advocate and recognize teaching excellence.

Director, Sam Boothby, Ed.D.
GRADUATION POLICIES

The faculty of Maharishi University of Management determine whether students are qualified to graduate. Qualifications are based on the following factors: satisfactory completion of all academic requirements as described in the certificate or degree requirements listed below, the specific requirements for the student’s major or program (listed under “Academic Programs”), and success in meeting the University’s standards of holistic student development.

Students’ records must be complete with the Registrar and indicate the following: all academic requirements for their degree program have been satisfied, final grades are on file, all fees and charges incurred have been paid, and an “Application for Graduation” has been submitted at least 90 days prior to graduation. In addition, undergraduate students must participate in the assessment program by the Office of Evaluation.

Students whose academic records are not complete by three days before the graduation ceremony are ineligible to participate in the ceremony or receive their degrees. They must re-apply for the next graduation. Degrees are awarded twice a year, at the end of each semester. One graduation ceremony is held each year, at the end of the spring semester.

General and core curriculum graduation requirements for each student are determined by the Bulletin in effect when they begin studying at the University. Major and minor requirements are determined from the Bulletin in effect when the student begins their major or minor. Please see the Graduation Director in the Enrollment Center if you have any questions about graduation requirements.

DEGREE REQUIREMENTS

Requirements for a Bachelor’s Degree

A minimum of 166 semester units of course work are required for students to graduate with a bachelor’s degree. Within these units students must fulfill the following requirements:

Forest Academies
- FOR 100 The Science of Creative Intelligence
- FOR 431 Higher States of Consciousness
- FOR 475 Senior Capstone

General Education Requirements

First-Year Courses
- MVS 102 or MVS 192 Maharishi Vedic Science and Sanskrit
- MVM 130 Maharishi Consciousness-Based Health Care
- PHYS 110 Foundations of Physics and Cosmology
- BIO 101 Physiology is Consciousness
- WTG 192 College Composition II (Students may waive based on transfer credits.)
- ESS 103 First-Year Team Building

Distribution Courses—Second Year
- 4 units from Fine Arts
- 4 units from Humanities (LIT, HUM, some FA, some THE, some Rotating University courses)
- 4 units from Applied Social Sciences (MGT, GOV, or ED)
- 4 units from Natural and Applied Sciences (Physics, Chemistry, Biology, Computer Science, Engineering, and MCBHC)
- 4 units from Mathematics (courses numbered 152 or higher or MGT 314)

Specific Courses

Fine Arts (4 units)
- Any writing course numbered higher than 192
- FA 201 Art and Nature
- FA 282 Video Production Studio
- FA 290 Animation
- FA 301 Drawing Studio
- FA 311 Painting I
- FA 341 Ceramics I
- FA 351 Sculpture I
- FA 361 Digital Media I
- THE 301 Acting I
- THE 330 Voice and Diction
- THE 332 Movement and Improvisation I
- THE 366 Play Production

Music
- Any literature course
- FA 203 and 204 Understanding Art I, II
- FA 229 Art and Culture (Rotating University)
- FA 381, 382, 383, 384 Art History I, II, III, IV
- THE 345 Theater History
- HUM 231 Great Civilizations
HUM 108 The Good Life in Western Philosophy
HUM 110 Western Philosophy
Some Rotating University courses

Applied Social Sciences (4 units)
Any education course
Any business course
Any government course

Natural and Applied Sciences (4 units)
Any computer science, physics, engineering, biology, or MVM course

Mathematics (4 units)
Any mathematics course numbered 152 or higher
MGT 314 Introduction to Statistics

Maharishi Vedic Science (8 units)
Any MVS courses; maximum of 4 units of Maharishi Gandharva Veda music courses

Writing Proficiency
WTG 191 College Composition I (may be waived based on the results of a diagnostic assessment)
WTG 192 College Composition II (Students may petition to waive based on transfer credit)

General Bachelor’s Degree Requirements
Minimum of 166 units, including Research in Consciousness (RC) and transfer credit

Forest Academies
One for each semester enrolled for at least 4 blocks of classes
(Students enrolled one year or less may not miss any Forest Academies. Students enrolled 1 1/2 years or longer may miss one Forest Academy.)

Research in Consciousness (RC) Courses and GPA
Completion of each semester’s RC course with a grade of C or higher (Students are automatically enrolled in RC 320 or RC 332 for each block they are enrolled in an instructional course.)
Cumulative RC GPA of 2.0 or higher

Instructional Grade Point Average (GPA)
Cumulative instructional GPA of 2.0 or higher

Major
Completion of requirements for a major field of study, listed under “Academic Programs.” (A maximum of 50% of the units in a major can be transferred.)

Electives in Maharishi Vedic Science
8 units of any MVS electives (credit for TTC courses applies)

Program Requirements
Completion of course entitled “Health Related Fitness.”

Daily participation in dynamic physical activity for at least 30 minutes perday Monday–Friday, and 45 minutes Saturday and Sunday.

Assessment Tests

Requirements for a Certificate

Forest Academies
Required course:
FOR 100 Science of Creative Intelligence plus an additional Forest Academy for each semester in which the student is enrolled for at least 4 blocks
Students at the University 1 1/2 years or longer are allowed to miss one Forest Academy during their certificate program.

Research in Consciousness (RC) Courses and GPA
Completion of each semester’s RC course with a grade of C or higher (Students are automatically enrolled in RC 320 or RC 332 for each block they are enrolled in an instructional course.)
Cumulative RC GPA of 2.0 or higher

Instructional Grade Point Average (GPA)
Cumulative instructional GPA of 2.0 or higher

Program Requirements
Completion of requirements for a specific certificate, listed in “Academic Programs”

Requirements for a Master’s Degree

Forest Academies
Completion of one of the following:
FOR 500 Science of Creative Intelligence: 33-Lesson
FOR 501 Science of Creative Intelligence: Review plus an additional Forest Academy for each semester in which the student is enrolled for at least 4 blocks
• Students in one-year programs may not miss any Forest Academies.
• Students in 1 1/2 year or longer programs are allowed to miss one Forest Academy during their master’s degree program.
• Students in non-standard programs may have different Forest Academy requirements.

Research in Consciousness (RC) Courses and GPA
Complete each semester’s RC course with a grade of C or higher (Students are automatically enrolled in RC 520 or RC 535 for each block they are enrolled in an instructional course.)
Cumulative RC GPA of 2.0 or higher

Instructional Grade Point Average (GPA)
Cumulative instructional GPA of 3.0 or higher

Program Requirements
Requirements for a program of study, listed in “Academic Programs,” which may include completion of one of the following:

1) Thesis with an oral examination
When a thesis is part of the planned program, students consult with the department in the selection of a faculty member who is willing and able to direct the research and the writing of the thesis. The director may or may not be the original departmental academic advisor. • A minimum of eight units in master’s thesis research is required; these units count toward the minimum number of units for the degree. • Some departments may require more than eight units of master’s thesis research. The maximum number of units that may be earned in master’s thesis research is determined by each department. • The thesis must be acceptable to the student’s thesis director. • The thesis must be organized, typed, duplicated, and bound according to regulations prescribed by the Graduate School. An abstract of the thesis not exceeding 150 words must also be prepared. • Students in a thesis program are required to pass an oral examination on the thesis.

2) Comprehensive examination
The comprehensive examination for the master’s degree may be in the form of a written or oral examination. The date for the examination is scheduled by the department. The student must be registered during the term in which the examination is taken.

3) Integrative final project with an oral presentation

Requirements for a Doctoral Degree

Forest Academies
Complete one of the following:

FOR 500 Science of Creative Intelligence: 33-Lesson
FOR 501 Science of Creative Intelligence: Review
plus an additional Forest Academy for each semester, regardless of the number of units taken in the semester (Students are allowed to withdraw from one Forest Academy during their doctoral program.)

Research in Consciousness (RC) Courses and GPA
Completion of each semester’s RC course with a grade of C or higher (Students are automatically enrolled in RC 320 or RC 332 for each block they are enrolled in an instructional course.)
Cumulative RC GPA of 2.0 or higher

A grade of “B” or higher in all instructional courses

Core Curriculum
Completion of core curriculum for a specific program of study, listed in “Academic Programs”

Comprehensive Exam (if applicable to the program)
This examination is taken after completion of the core curriculum in each program. Based on the results of this exam, the student may be awarded a master’s degree. The student must be registered during the block in which this examination is taken.

Qualifying Exam
This examination assesses the ability of the student to pursue doctoral research. (This examination should also cover any core curriculum beyond the master’s level for doctoral programs requiring a master’s degree for admission.) On the basis of successful completion of this examination, the student is advanced to candidacy for the doctoral degree.

Advisory Committee
This committee, formed by each doctoral student, should have at least four members including: the thesis advisor, two faculty members, and one faculty member from another university or research institution. The membership of the advisory committee must be approved by the director of the doctoral program and the Dean of the Graduate School.

Dissertation Proposal
The dissertation proposal is approved by the student’s advisory committee and the Dean of the Graduate School.

Teaching and Research Experience
All doctoral students are required to spend some time as teaching and research assistants.

Advanced Course Work
Advanced courses will be prescribed by the thesis advisor and advisory committee to ensure that the student will have a comprehensive knowledge of a major field and related subjects. The courses the student is required to take will depend upon prior academic background in relation to the selected graduate program and area of research interest.

• Original Research for a Dissertation
Each student working toward a doctor of philosophy degree must conduct original research as the basis for a dissertation that makes a significant contribution to knowledge. The research is to be under the guidance of the thesis advisor and the advisory committee, and requires their approval. All doctoral students must be registered during each block in which they are working on their doctoral dissertation, whether or not they are in residence on campus. It is the policy of the University to permit and facilitate dissertation research by international students in their home countries, whenever feasible.

• Written Dissertation and Abstract
The dissertation must be organized, typed, duplicated, and bound according to regulations prescribed by the Graduate School. An abstract of the dissertation, not exceeding 350 words, must also be prepared. • The student must submit to the major professor copies of the dissertation and abstract for committee review before the final oral examination. • The dissertation must be in completed form, typed with finished diagrams, etc., and acceptable to the major professor. It must not, howev-
er, be bound at this time. • When the dissertation committee has reviewed and approved the dissertation and the student has passed an oral examination in its defense, the student shall incorporate in the dissertation any recommended changes and corrections before submitting it to the Graduate School. • The student must submit to the Graduate School a final unbound copy of the dissertation and abstract, and an additional copy of the abstract, the microfilming and binding contract, the microfilming and binding payment receipt, and the required forms by the date established by the Graduate School.

• **Oral Defense of the Dissertation**

The oral examination in defense of the dissertation will be conducted and evaluated by the dissertation committee supplemented, at the discretion of the Dean of the Graduate School, by additional appointed faculty members. • The examination will be scheduled for a date not earlier than two weeks after the dissertation and abstract have been submitted to the major professor and dissertation committee. The student must be registered during the block in which the final oral examination is taken.

• **Microfilming and Publication of the Dissertation**

All doctoral dissertations submitted to the Graduate School must be microfilmed. The University subscribes to the service offered by University Microfilms International. • Two copies of the dissertation will be put in the Maharishi University of Management Library and will be available for interlibrary loan. The abstract will be published in Dissertation Abstracts, which will announce the availability of the dissertation in film form. • The microfilming and binding fee required of all doctoral students submitting dissertations will cover the cost of the library microfilm copy, binding, and the publication and distribution of the abstract. The student may order additional bound copies through University Microfilms International. • An extra fee is charged if the dissertation is to be copyrighted. Information about the amount of this fee and method of payment may be obtained from the Graduate School. The University considers microfilming a form of publication; this does not, however, preclude publication of the dissertation in a journal or monograph, either in whole or in part.

GENERAL POLICIES

Transfer Students

• Undergraduate degree students can apply to transfer units to cover up to half the course work in the major as well as general electives, for a maximum of 100 total semester units. Transfer credits are accepted for courses completed with a grade of “C” or higher on a course-by-course basis from accredited colleges and universities, and other institutions with the approval of the Registrar. Students must apply for evaluation of transfer credit through the Enrollment Center.

• Graduate degree students can apply to transfer course credit on a course-by-course basis, as determined by the departmental advisor. Students apply for this evaluation through the Enrollment Center. (A minimum grade of “B” is required in all courses transferred at the graduate level.)

• Credit from international institutions will be evaluated on an individual basis. To be considered for transfer credit, any non-English academic records must be accompanied by a certified English translation. This should be included with the student’s admission materials.

• Transfer students must apply for a transfer credit evaluation before the end of their first semester. Transfer credit may be applied to the distribution requirement.

• Students awarded at least 80 units of transfer credit must complete the following requirements:

 Distribution Courses:

 - MVS 102 or MVS 192 Sanskrit and Maharishi Vedic Science
 - BIO 101 Physiology is Consciousness
 - MVM 130 Maharishi Consciousness-Based Health Care (not required)
 - PHYS 110 Physics
 - 4 units from the Fine Arts or Humanities
 - 4 units from Applied Social Sciences
 - 4 units from Natural and Applied Sciences or Mathematics
 - 4 units from Maharishi Vedic Science

Residency Requirements—Undergraduate students must take at least 60 semester units of instructional course work (1 1/2 years) in residence for a bachelor’s degree or at least 40 units of instructional course work (one year) in residence for an associate’s degree. For a master’s degree, at least 40 semester units of instructional course work (one year) must be taken in residence. For doctoral programs, at least 80 semester units of instructional course work (two years) must be taken in residence. Exceptions to the residency requirements may be made for undergraduate programs with the approval of the Registrar and for graduate programs with the approval of the Registrar and the Graduate Committee.

Time Limits on Degrees

Undergraduate degrees: There is no time limit. However, students leaving school for more than one year will be under the new graduation requirements listed in the current Bulletin when they return to school.

Master’s degrees: All requirements must be completed within five years from the time of first enrollment in the program.
Doctoral degrees: Qualifying examinations must be taken within one year of completion of the core curriculum. After the qualifying exam is completed, a maximum of 2 years is allowed to write and defend the dissertation proposal. Once the proposal is accepted, 3 years is allowed to conduct research, write, and defend the final dissertation.

Credit by Examination—Students who have earned credit by examination through approved programs such as College-Level Examination Program (CLEP), American College Testing (ACT), or College Board Advanced Placement (AP) and whose scores are in the 60th percentile or above may use this credit to pass/waive a maximum of 12 units of upper-division coursework.

Second Bachelor’s Degree—Students with a prior bachelor’s degree may enroll for a second bachelor’s degree. They may transfer up to one-half of the courses in the major on a course-by-course basis, but the unit requirement for the major remains the same. (Students with a prior degree from Maharishi University of Management need only complete the major and any graduation requirements which have been added since they were last in school. For a second bachelor’s degree in Maharishi Consciousness-Based Health Care, students must complete the major requirements.

For a second bachelor’s degree in any other subject, students who do not have a previous degree from Maharishi University of Management must complete the following:

a. The requirements of their new major (up to one-half of the units may be transferred)
b. A minimum of one and one half years on campus.
c. 33-lesson SCI course
d. Vedic Science and Sanskrit
e. One Forest Academy for each semester enrolled for at least four blocks; required Forest Academies should be chosen first
f. Senior assessment testing is not required.

Students with a Prior Ph.D. or Professional Degree who wish to pursue a Ph.D. program should follow these steps to determine their academic program:

- Admission is determined by the respective department.
- A major advisor and an advisory committee (three members) are selected from the student’s department, and the academic program is developed in consultation with the student.
- The academic program is submitted for review to the Graduate School following its development by an advisory committee from the Department. A copy of the advisory committee report must be attached.
- This review includes the appropriateness of the advisory committee membership, the academic program, and the transfer of courses or degree credits from one program to another.

Examinations—Students are not permitted to take examinations early. All students are required to complete each course fully, including taking the final examination on the date scheduled. Exceptions may be made for compelling reasons only. Students must have the prior approval of both the course instructor and the Academic Standards Committee before finalizing travel plans. Students should submit a “Petition to Academic Standards Committee” and include a note of approval from the course instructor before the final week of the course.

The same policy applies to taking examinations after the last class session—prior approval must be secured from the course instructor. The instructor will then give you a grade of “I” (Incomplete) until the exam is completed. Then, the instructor will officially change the grade with the Registrar.

Late Work—Students may not hand in work after the last class session of a course unless they have made prior arrangements for a grade of “Incomplete” (see “Incompletes” below) with the course instructor. Depending on the amount of work a student has yet to do, the faculty may elect to reduce the grade proportionally or give the student an “NC” instead of an “I.”

Student Records—Students have the right to view their records at any time. They must contact the Enrollment Center to make an appointment. Any documents to which the student has waived the right of access will be removed from their file before viewing is permitted.

Academic Transcripts from the University are available at $10 for the first copy. Transcripts from other U.S. schools cannot be copied; the student must order them directly from the other schools. Original copies of transcripts from schools outside of the U.S. can be returned to the student and copied for our records for $1 per page.

Academic Transcripts—An academic transcript is the complete record of a student’s academic life while at the University. It reflects all course work, grades, major areas studied, degree(s) received, and academic progress. Students may request their academic transcript at any time from the Enrollment Center by using an “Academic Transcript Request” form, or other written request. Your signature is required on your written or faxed request before the Enrollment Center is able to release a transcript. Please include the following information in your request: name, former names, Student ID number, dates of attendance, address where you would like to have the transcript sent, and your signature. A $10 processing fee for the first transcript and $3 for each additional copy must accompany the request. If
express shipping is requested, it must be paid for in advance. The e-mail address is transcripts@mum.edu.

Transcripts may be withheld by the University if:

- a student has an outstanding balance due with the Student Accounts Office;
- a student has borrowed money in the form of a Federal Perkins Loan or Federal Stafford Loan and has left the University without completing the required Exit Interview; or
- a student is past due or in default on their Federal Perkins Loan or Federal Stafford Loan payments.

REGISTRATION POLICIES

All students, including new and readmitted students, are required to complete their registration at an assigned time several days before the beginning of each semester. Students are advised when to arrive for this registration. Students who are authorized to begin classes later in the semester register on the appropriate dates.

Payment—All students must either make full payment, or make appropriate arrangements for payment, with the Enrollment Center at or prior to registration. Payment procedures and payment plans are described under the “Tuition and Fees” section in this Bulletin. A student whose payments are past due may be suspended from the University; that means that the student will not be permitted to enroll or continue in courses, to remain on the meal plan, or to live in campus housing. Diplomas, certificates, or transcripts will not be issued to or for a student whose account is in arrears.

Course Enrollment—The University reserves the right to limit the enrollment in any course, and to withdraw any course if too few students have registered or due to other unforeseen circumstances.

Changing Classes (Add/Drop)—The block system requires that even on the first day of the course much material must be covered. For this reason, students should plan ahead: if they are unsure about which course to take, they should see the professor of the course before the block starts for help in making a decision.

To change from one course to another, visit or call the Enrollment Center. If the block has already started, you will be given an Add-Drop slip which must be signed by the instructor of the course being added and then returned to the Enrollment Center. You will then be given an Admit to Class slip which is required for entry into the new class.

Course Withdrawals—Students may withdraw from a course for any reason before a course starts or during the first half of a course. After the midpoint, students may only withdraw for reasons of illness or family emergency. If a student stops attending during the second half of the course for any other reason, they will receive a grade of NC. Students withdrawing from a course who live on campus may recover from illness in their room, and then must either return to class, move off campus for the remainder of the block, or engage in other activity as approved by the Dean of Students. Students must withdraw within 3 days of their last day of attendance in class or they will receive a grade of NC.

Forms for class withdrawal are available from the Enrollment Center. This form must be completed for every withdrawal. It includes a statement of the withdrawal policy.

Instructional Course Withdrawal Procedures

1. To withdraw from the course before it has started, come to the Enrollment Center to fill out a form.

2. To withdraw after a course has started, fill out a withdrawal form together with the course instructor within 3 days of the last day of class attended. Please give complete information: the reason for withdrawal and intentions for the rest of the block. Sign and date the form at the bottom. After completing the form, the original goes to the Enrollment Center for filing in your permanent record; one copy goes to you; and one copy to your course instructor. Your instructor will record a grade of W on the grade sheet for the course.

3. If you stop attending class during the second half of the course for any reason other than illness or family emergency, the instructor will record a grade of NC on the grade sheet for the course. No withdrawal form is completed in this case, and the Dean of Students is immediately informed of the student’s situation.

4. It is your responsibility to inform your instructor of your intention to withdraw within 3 days of the last day of class attendance. If you are absent longer than 3 days, the instructor must assign a grade of NC.

5. If you are withdrawing from an entire block and want to withdraw from the RC course in that block as well, you must indicate that on the withdrawal form. You do not need to fill out a separate RC withdrawal form. (If you are withdrawing from only a part of a block, please see the RC Director for instructions.)

Research in Consciousness Course Withdrawal Procedures

1. If you are withdrawing from an entire block of instructional course work, you may also withdraw from the RC course for that block by marking the appropriate box on the course withdrawal form. There is no need to fill out a separate form.

2. If you wish to withdraw from a entire block of RC, but are not withdrawing from the instructional course, you must fill out a special RC course withdrawal form. Such withdrawals are granted only for compelling reasons such as illness or family emergency.
(Partial block withdrawals are generally not approved. It might be possible (if you are not enrolled in class in part of a block or you withdraw from a 1–2 week course) for your RC to be prorated. To do this, please contact the RC Director in advance.

3. If you are enrolled in a course out of town for a block, you must inform the RC Director in advance. (This would be for approved internships or fieldwork, Rotating University, courses in North Carolina, etc.) Students do not receive RC course credit when away from the University.

Withdrawal from the University—Students who wish to withdraw from the University in good standing must complete a “Petition for Withdrawal from the University” before leaving campus. Students asking for a refund or adjustment of charges must also complete a “Change in Registration” form. Both forms are available from the Enrollment Center. (Please refer to “Registration Changes and Refunds” in this Bulletin.) Students who withdraw must apply for readmission through the Office of Admissions when they desire to return.

Undergraduate Seniors May Take Graduate Level Courses (up to eight units) with the written permission of the instructor and the Graduate Committee, submitted to the Enrollment Center prior to the beginning of the course.

Directed Study is allowed only in special cases. Students may apply for a Directed Study by following these guidelines:

1. The student must fill out a Directed Study form with the faculty who will supervise the course.
2. The Directed Study form must be signed by the Department Chair of the supervising faculty, the supervising faculty, and by the student’s advisor.
3. The form must be submitted to the Registrar’s Office before the beginning of the course.

Directed Study forms submitted after the block begins may not be accepted.

Internships and Fieldwork must be supervised by a faculty member and approved in advance by the Department Chair and the Academic Standards Committee. An Internship form must be submitted to the Enrollment Center at least one week before the internship is to start. Internship forms submitted after the beginning of the block may not be approved.

Class Meeting Times—Classes in standard programs generally meet Monday through Friday from 9:45 a.m. to 3:15 p.m. with an hour break for lunch, and from 9:45 a.m. to 2:30 p.m. on Saturday. Attendance at all classes is required. (NOTE: Each non-standard program has its own class schedule.)

Class Attendance and Participation—A significant educational experience consists of more than merely assimilating information. Each class session is a valuable opportunity to develop important skills—for example, communication skills. The focus of group attention on the topic, intellectual discussion, public speaking during question and answer periods, and small group projects—all these elements combine to make each class session an enjoyable and valuable learning experience. That is why the faculty place as much value on what students experience in each class as on the information they gain.

For these reasons, attendance at all classes and full participation in all aspects of the assigned curriculum are required. Exceptions are made only for compelling reasons such as illness or family emergency. This means that a student who misses a class for other than a compelling reason is liable for a grade of “No Credit” (NC) in that course. If a student must miss more than one day for a 1-unit course, two days for a 2-unit course, or three days for a 4-unit course due to illness or family emergency, he or she must either withdraw from the course or ask the instructor for permission to apply for a grade of “Incomplete.”

Because of the importance of the first lesson of each course, students are expected to be present from the first lesson onward. Any student not present when the course instructor calls roll on the first day (except for such compelling reasons as illness or family emergency) may be asked to withdraw from the course.

Standard Enrollment—Students in standard programs normally register for 24.5 to 27 units in each semester. 22 units of instructional courses and 2.5 to 5 units of RC courses. All students are expected to be enrolled in every block. Enrollment in nonstandard programs varies from program to program.

Double Majors—Undergraduate students may major in two disciplines by satisfying the departmental requirements for each. The second major must involve at least 24 units of course work outside the first major department, and all course work for both majors must be completed before the degree is conferred.

Dual Enrollment of Undergraduates—A senior who is within eight credit units of graduation and who has been accepted to a graduate program may, with the approval of the academic department and the Dean of the Graduate School, be dually enrolled for graduate study while completing the requirements for the bachelor’s degree. Admission to graduate study must be approved before course work applying to a graduate program is undertaken. Students dually enrolled are normally not eligible for graduate assistantships, other forms of graduate student financial aid, or those services and prerogatives normally reserved for graduate students. Such students will be given an undergraduate status until the baccalaureate degree has been awarded.
Additional Courses for Graduate Students—A graduate student admitted with deficiencies in academic background may be required to take academic work in addition to the prescribed courses of a program. Units earned in these courses generally do not count toward the minimum unit requirements for a degree.

Readmission—Students who have been away from the University for one semester or longer or who have officially withdrawn from the University must apply by completing an “Application for Readmission” form with the Office of Admissions. Readmission is not automatic; applicants are subject to admissions review. Applications should be returned as early as possible.

Doctoral Research Off Campus—Candidates for the doctoral degree may, with the approval of the advisory committee, carry on some of the research work off campus. Arrangements for registration may be made by applying at the Enrollment Center.

Class Selection is held each spring for the next academic year. All returning students who are attending classes at that time must complete class selection for the next year’s classes. This facilitates registration in the fall.

Course Numbering System

<table>
<thead>
<tr>
<th>Course Numbering</th>
<th>Course Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>000–099</td>
<td>Technical Training or Certificate Courses</td>
</tr>
<tr>
<td>100–199</td>
<td>Undergraduate First-Year Courses</td>
</tr>
<tr>
<td>200–399</td>
<td>Undergraduate Upper Division Courses</td>
</tr>
<tr>
<td>400–499</td>
<td>Undergraduate Advanced Upper Division Courses (open to some graduate students)</td>
</tr>
<tr>
<td>500–599</td>
<td>Graduate Courses</td>
</tr>
<tr>
<td>600–799</td>
<td>Advanced Graduate Courses</td>
</tr>
</tbody>
</table>

GRADING POLICIES

Evaluation of each student’s abilities and achievements is an integral aspect of the University. Among the means of evaluation are class participation, oral and written examinations, projects, and papers. In addition, to receive academic credit for any course, students are expected to attend all classes and participate fully.

Grades are posted for each course about two weeks after the end of each block. About six weeks after the end of each semester students receive their grade report which includes the Instructional and RC Grade Point Averages (GPA), the primary indicators of academic progress.

Grading for Instructional Courses

<table>
<thead>
<tr>
<th>Grades</th>
<th>Points (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(excellent) 4.00</td>
</tr>
<tr>
<td>A-</td>
<td>3.70</td>
</tr>
<tr>
<td>B+</td>
<td>3.30</td>
</tr>
<tr>
<td>B</td>
<td>(good) 3.00</td>
</tr>
<tr>
<td>B-</td>
<td>2.70</td>
</tr>
<tr>
<td>C+</td>
<td>2.30</td>
</tr>
<tr>
<td>C</td>
<td>(fair) 2.00</td>
</tr>
<tr>
<td>C-</td>
<td>1.70</td>
</tr>
<tr>
<td>NC</td>
<td>(No Credit) 0.00</td>
</tr>
</tbody>
</table>

(Grade Codes Not Used in Computing Grade Point Average)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Pass</td>
</tr>
<tr>
<td>I</td>
<td>Incomplete</td>
</tr>
<tr>
<td>W</td>
<td>Withdrawal</td>
</tr>
<tr>
<td>PW</td>
<td>Pass/Waive</td>
</tr>
<tr>
<td>AU</td>
<td>Audit</td>
</tr>
<tr>
<td>H</td>
<td>Honors</td>
</tr>
<tr>
<td>NCR</td>
<td>Course was repeated</td>
</tr>
<tr>
<td>NR</td>
<td>Not Required (RC courses only)</td>
</tr>
</tbody>
</table>

Grading for Research in Consciousness Courses

<table>
<thead>
<tr>
<th>Grades</th>
<th>Points (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A H</td>
<td>95% or higher 4.00</td>
</tr>
<tr>
<td>A</td>
<td>90–94% 4.00</td>
</tr>
<tr>
<td>B</td>
<td>80–89% 3.00</td>
</tr>
<tr>
<td>C</td>
<td>70–79% 2.00</td>
</tr>
<tr>
<td>NC</td>
<td>0–69% 0.00</td>
</tr>
</tbody>
</table>

Pass/No Credit Grades (P, NC) are grades used in some laboratory, fieldwork, practicum, and some RC courses.

Incomplete (I) is given in rare cases when some required work cannot be completed before the end of a course due to illness or family emergency. A student must have completed at least 75% of the course work and have made arrangements for the grade of “I” before the final examination. A change of grade must be received by the Registrar before the end of the following semester or the “I” grade will be changed automatically to an “NC.”

Withdrawal (W) is granted under certain circumstances. (See “Course Withdrawals” listed above.)

Pass/Waive (PW)—This grade is used to indicate credit given by examination.

Auditing Classes (AU)—To audit classes, students must have the written approval of both the instructor and the Academic Standards Committee before the course begins. “Approval for Audit” forms are available at the Enrollment Center. Students auditing a course receive the grade of “AU.” Auditors are expected to participate fully in the class including taking the final exam. If the student does not fulfill this requirement, a grade of “NC” will be given for the course. Students are required to pay full tuition for all audited classes. (Although visitors often sit in on individual class sessions, anyone who sits in on an entire course is required to officially register as a student.)

Honors (H)—This is added to an instructional course grade
when a student has completed the Honors requirement for that course.

NCR—This means that the course was repeated later for a passing grade and that this grade has been removed from the instructional GPA.

Grade Changes must be approved by the course instructor or department chair. Grade changes are submitted by the department to the Registrar and then entered on the student’s record. Approval is subject to review by the Academic Standards Committee.

Honors for Undergraduates
1. An Honors Component may be available for undergraduate courses. Completion of the Honors Component and a grade of A or A- is required in order to receive Honors. The Honors grade will be reflected on the transcript.
2. Undergraduate students achieve the President’s Honor Roll for each semester in which they complete at least 12 units of instructional course work with a grade point average of 3.70 (“A-”) or higher, receive no NC grades, and have an RC grade of “B” or higher.
3. Graduation honors (summa cum laude, magna cum laude, and cum laude) are awarded by the faculty to undergraduates based on the student’s academic excellence and holistic development.

Honors for Research in Consciousness—Students in all programs achieve Research in Consciousness (RC) Honor Roll for each semester in which they successfully complete at least 4 blocks of RC course work with a grade of 4.00.

Repeating a Course for a Higher Grade is permitted in rare cases with approval of the Registrar and the course instructor. Credit is given only once, but the registration and grade for both courses will appear on the transcript. Only the higher of the two grades is used in calculating the instructional GPA beginning with the semester in which it is earned.

Retesting on an Examination is permitted for graduate students under the following circumstances:
1) Only students receiving a grade of less than a B but higher than an NC on an examination may be retested.
2) No matter how well students perform on the retest, their final grade for the course cannot be higher than a B.
3) The nature, extent, and preparation for the retest is determined on a case-by-case basis by the course instructor.

RESEARCH IN CONSCIOUSNESS POLICIES

The Transcendental Meditation program is practiced by all faculty and staff, as well as by all students as part of their required Research in Consciousness courses. Many students also learn the advanced TM-Sidhi program, including Yogic Flying, and practice this as part of their Research in Consciousness program. For the personal benefit of all students, faculty, and staff there are specific policies that support the practice of the Transcendental Meditation and TM-Sidhi programs. Each element of these technologies for the development of consciousness has been carefully structured to produce maximum benefit. In order to ensure for everyone the integrity and effectiveness of the teaching and practice of the technologies of Maharishi Vedic Science, these technologies are practiced according to the instruction of qualified teachers, recognized by Maharishi University of Management, and they are practiced exclusive of other programs and procedures.

Students are automatically enrolled in Research in Consciousness courses for every block they are enrolled in other academic courses. Academic credit is given for these courses (which also include a class session with a tutor). Students receive credit for successful completion of these courses in each academic block and are required to receive a passing grade for each semester they are enrolled.

Students practicing the Transcendental Meditation technique participate in these courses (RC 320 or RC 520) in comfortable halls designed for group meditation. Those who have also learned the TM-Sidhi program (Sidhas) take these courses (RC 332 or RC 535) in the University’s Golden Domes, where they join faculty and staff and hundreds of members of the Fairfield community. Meditators and Rising Sidhas receive 0.5 semester units for each block they complete, up to 2.5 units per semester. Sidhas and Governors receive 1.0 semester unit per block, up to 5 units per semester.

Through participation in the Research in Consciousness curriculum, students enjoy greater intelligence, creativity, and happiness, a progressively more balanced and stress-free physiology, and spontaneously more harmonious interactions with others.

RC Grading Policies

Each student is expected to follow the instructions given by the University’s faculty and TM-Sidhi Program Administrators, and to place the highest priority on attending all RC sessions.

• Students are graded for their attendance at RC sessions during the entire block—that is, from the morning of the first day of the block through the afternoon of the last class day of the block. In most blocks this will be 50 RC sessions.
• Students practicing the TM-Sidhi program are also graded on their Yogic Flying.
• Credit is earned for each RC session attended. A full explanation of procedures applied to RC attendance is available from the RC Office.
• For Meditators: Grades are based on the percentage of RC
sessions attended as well as participation at the Tutorial Class session.

- For Sidhas: Grades are based on the percentage of RC sessions attended (40%), the Tutorial Class session (10%), and Yogic Flying (50%).
- Extra credit toward attendance may be earned by:
 1) attending group program on the long weekends between most blocks,
 2) receiving an individual checking of their practice,
 3) attending Advanced Lectures (for Meditators only),
 4) participating in extended programs (for Sidhas only) on Sunday mornings and Friday, Saturday, and Sunday mornings over some long weekends, and
 5) participating in World Peace Assemblies (WPAs) or Residence Courses over the long weekend at the end of some blocks.
- RC grades are based on each student’s participation in the course over an entire semester. That is, one grade will be assigned at the end of the semester and will be based on the average of the student’s RC participation over all the blocks for which the student is registered in the semester. Thus, if circumstances during one block lead to lower attendance in RC, a student may still attain an “A” for the semester by higher levels of participation in other blocks in that semester.
- The semester RC grade goes into a separate grade point average (GPA) reserved for Research in Consciousness courses.
- Students are expected to maintain at least a “C” average in Research in Consciousness. In order to qualify for graduation, at least a “C” average in RC each semester and a cumulative RC GPA of at least 2.0 will be required. If students receive less than a “C” in one semester in RC, they will be placed on RC Alert in order to alert them to the need for improvement in this area. Students will also be required to make up enough blocks of RC when not registered in other courses to bring all semester grades up to a “C” or “P” grade.
- In addition to maintaining a “C” average in RC courses, successful completion of at least four blocks of Research in Consciousness in each semester is required for graduation.
- For information on the procedures for withdrawing from individual blocks of RC and how missed RC blocks can be made up, please contact the RC Director.
- Special exceptions to RC attendance policies are considered case by case by the RC Director. This includes graduate students needing to do research at other universities, child care situations, illness, etc.

NOTE: Awarding of a student’s degree may be delayed until deficient RC units are made up.

RECREATION COURSE POLICIES

All undergraduate students are required to engage in daily dynamic physical activity as a University graduation requirement. It is expected that students will be physically active for at least 30 minutes per day from Monday to Friday and 45 minutes on Saturday and Sunday. All students must complete a course entitled Health-Related Fitness. The other activities are to be chosen from a variety of courses offered in each four-week block.

- The main purpose of this requirement is to have students exercise regularly while studying at the University.
- Students must have completed their recreation requirement of Health-Related Fitness to be eligible to run for a Student Government office.
- Students may receive credit for participation in one or more sports club teams. All players desiring credit must inform their coach at the start of the block in which they wish to receive credit. The player must participate in ten playing sessions (includes team practices, games, and tournaments) during the block.
- Directed study is available with prior written approval from the coordinator of the recreation course program. Students must sign an exercise contract with the coordinator prior to the start of the block.
- Credit can also be given for participation in one-day, long-weekend, and extended adventure trips. (Please contact the Exercise and Sport Science faculty if you choose this option.)

MONITORING STUDENT PROGRESS

The academic progress of all students is monitored so they and their tutors can be alerted at an early stage that some academic problem has arisen. Students who are placed on “Instructional Probation” or “RC Alert,” as described below, work with their tutor, department faculty, the Mathematics and Writing Labs, or the RC Office until they have reached a satisfactory level.

Instructional Probation—If any of the events listed below occur in one semester, students are placed on Instructional Probation for the following semester. Instructional Probation is listed permanently on the student’s transcript for the semester in which they receive the alert status. The probationary period is for the next semester the student is enrolled. If they receive no more “NC” grades during this period and the instructional grade point average (GPA) is at an acceptable level by the end of the next semester, they will no longer be on probation.
Undergraduate students are placed on Instructional Probation when, in one semester, they receive:

- six instructional units or more of “NC” grades, or
- a semester or cumulative instructional GPA of less than 2.0.

Master’s students are placed on Instructional Probation when, in one semester, they receive:

- one instructional unit or more of “NC” grades, or
- a semester or cumulative instructional GPA of less than 3.0.

Doctoral students are placed on Instructional Probation when, in one semester, they receive:

- any instructional course grade below a “B.”

RC Alert—Students are placed on RC Alert when they receive:

- a semester grade of less than a “C” in their Research in Consciousness course, or
- a cumulative GPA below 2.0

RC Alert is not listed on the student’s transcript but does require the student to meet with the Dean of Men or the Dean of Women before registering for the next semester. At this meeting, a strategy is developed with the student to help them correct the situation. As part of this strategy, the student is required to achieve at least 70% in RC for each of the next five blocks of enrollment at the University as well as making up enough RC blocks to bring the semester grade up to a “C.”

Suspension—Students are eligible for suspension from the University if they receive an instructional grade of “NC” while on Instructional Probation, do not fulfill the terms of RC Alert, or their GPA (either instructional or RC) remains below acceptable levels for an additional semester. A suspension meeting will be held which will include members of the Academic Standards Committee. The student’s Tutor will also attend and the student may invite one student, faculty, or administrator as a representative. The decision on suspension will be determined by the members of the Academic Standards Committee.

A suspension may be one or two semesters in length. A suspended student must apply for re-admission through the Office of Admissions before returning to the University.

(Note: The decision of the committee is final, though the student may seek a review by the Academic Council through the Dean of Faculty.)

Additional Points for Graduate Students

Master’s Programs—Some departments will not permit students to remain in a program if there is an accumulation of more than a specified number of graduate units with lower than a “B” grade even though the overall average is 3.0. Students who fail to meet the standards set by the department may be required to withdraw at the end of any block.

Doctoral Programs—These programs require a grade of “B” or higher in all courses. Doctoral students who are unable to meet the standard of doctoral quality work, as determined by the advisory committee, may be asked to withdraw at the end of any block. At the end of each semester, the advisory committee interviews all doctoral students to evaluate and discuss their progress in the program.

Satisfactory Academic Progress

Students receiving University scholarships or financial aid from the U.S. federal government are required to meet additional academic requirements in order to continue receiving these funds. A handout entitled “How to Maintain Your Financial Aid Eligibility” explains these additional requirements and is available from your Financial Aid Office located at the Enrollment Center.
GENERAL ADMISSIONS STATEMENT

In selecting applicants for admission, Maharishi University of Management considers each prospective student’s overall potential. Factors considered include not only academic accomplishment, but also maturity, motivation, and dedication to learning. Grades; extracurricular activities and work experience; recommendations from teachers, employers, and others who know the applicant well; scores on standardized tests; and other information, including answers to essay questions and personal interviews, are all considered.

An applicant’s degree of commitment to the educational opportunities offered at the University—enthusiasm for learning and dedication to developing full potential—is seriously considered in the admissions process.

• Admissions Interview

An interview with a representative of the University is a required part of the application process for both undergraduate and graduate programs. When a visit to the campus is not possible, this is done over the telephone.

For those who can come, many Visitors Weekend Courses are offered each year, during the fall, spring, and summer. These courses provide a complete introduction to the University and are highly recommended for prospective students and their families.

• Application Deadline for Admissions and Financial Aid

The academic year begins in mid-August. Most new students begin at this time; however, spring admission does occur for certain undergraduate and graduate programs. (Check with the Office of Admissions for details of program starting dates.) Special students may register for individual courses offered in one-month blocks throughout the year. (Please refer to “Special Program Admissions” in this section of the Bulletin.)

Applicants who plan to enter in August are encouraged to submit their completed applications by May 15. (For students applying to the master’s degree cooperative programs, the deadlines may differ.) For all students planning to enter in the spring semester, the date is November 15. Applying by these dates gives applicants the best opportunity for receiving the maximum financial assistance if accepted, and for space being available in the program for which they are applying. Applications received after these dates will also be considered and, in many cases, programs will be able to accommodate additional students.

To be considered for admission, prospective students should complete all aspects of the application process.

CRITERIA FOR UNDERGRADUATE ADMISSIONS

Applicants to the undergraduate programs are considered for admission after a comprehensive evaluation of their completed applications including essays, high school records (and previous college records, if applicable), SAT or ACT scores, recommendations, and an interview with an Admissions Representative.

Applicants who did not complete their high school study are required to submit one of the following: 1) General Educational Development (GED) certificate; or 2) a certificate of completion of a home-study program if the program is recognized by the student’s home state, or if the program is not recognized by the student’s state, the state must not consider the student to be in violation of truancy laws. Home-schooled applicants must also submit a complete home schooling record. All certificates and transcripts from high schools, colleges, and correspondence schools should be sent directly from the school or state agency to the Admissions Office.

While an applicant’s previous academic performance is a primary consideration, commitment to gaining maximum benefit from the educational opportunities offered at Maharishi University of Management is also an important consideration in the admission process.

• Undergraduate Application Procedure

For information regarding undergraduate application procedures, please refer to the University’s application.

GRADUATE ADMISSIONS

• Criteria for Graduate Admissions

Individuals who have earned a bachelor’s degree, or are in their senior year of college, may apply for admission to a program of graduate study at the University. Admission decisions are based upon the applicant’s academic record in undergraduate programs, other graduate programs (if applicable), graduate entrance examination scores, experience, personal qualifications, recommendations, and proposed program of study.

A grade point average of at least 3.0 (on a 4.0 scale) in the third and fourth years of undergraduate study is required by the Graduate School for regular admission to graduate pro-
grams. Exemptions are granted for specific situations.

• Acceptance Status

Upon admission to a graduate program, a student is classified in one of two categories—full or provisional acceptance. Specific criteria for distinguishing between these categories are determined within each department for its own programs. In general, these criteria are:

— **Full acceptance**: Students who are considered to be fully qualified to undertake a program toward the graduate degree for which they are admitted.

— **Provisional acceptance**: Students of promise who need to fulfill specific provisions (such as strengthening subject matter preparation) or whose available records are incomplete. A student who is admitted under provisional status will be eligible for regular status when the specific written conditions for full acceptance have been met.

• Graduate Application Procedure

For more information regarding graduate application procedures, please refer to the University’s application.

CERTIFICATE PROGRAM ADMISSIONS

Applicants must have a high school diploma or the equivalent and are required to

• Complete an application;

• Submit personal recommendations;

• Have certified transcripts sent directly from their high school and any colleges they have attended (for international students, certified English translations of transcripts must accompany original transcripts).

Students whose native language is not English must also submit a Test of English as a Foreign Language (TOEFL) score. A score of 550 or higher is required.

While an applicant’s previous academic performance and recommendations are a primary consideration, commitment to gaining maximum benefit from the educational opportunities offered at Maharishi University of Management is also an important consideration in admission decisions.

A personal or telephone interview with an Admissions Officer is required.

TRANSFER STUDENTS

Maharishi University of Management welcomes qualified transfer students. For the number of units that may be transferred by undergraduate and graduate students, the method for evaluating those units, and residency requirements, please refer to “Transfer Students” in the “Graduation” section of this Bulletin. All transfer approval must be completed within the student’s first semester at the University, except for students receiving Veterans’ Educational Benefits (evaluation is done automatically upon enrollment).

Transfer students applying for U.S. financial aid must submit all transcripts from all previous schools to the Office of Admissions. Before financial aid can be awarded, these transcripts must be reviewed by the Office of Financial Aid to determine class standing and eligibility.

Undergraduate transfer students, like all Maharishi University of Management undergraduate students, complete the Science of Creative Intelligence course (NLS 100) as their first course in residence. They also complete the first-year curriculum including Natural Law Seminars and proficiencies in mathematics, writing, and computing, and all other degree requirements. (Please refer to “Degree Requirements” in the “Graduation” section of this Bulletin.) Note: Up to half of the units in the major can be transferred.

Graduate students are required to complete an SCI course (FOR 500 or FOR 501) at the start of their first year in residence. FOR 500 is for graduate students who have never taken the Science of Creative Intelligence 33-lesson course. FOR 501 is a review course for graduate students who have already taken this course at the University or another facility.

PLACEMENT EXAMINATION CREDITS

Students who have earned credit by examination through approved programs such as College-Level Examination Program (CLEP), American College Testing (ACT), and Advanced Placement (AP), and whose scores are in the 60th percentile or above, may use this credit to pass/waive up to 12 units of upper-division undergraduate course work.

INTERNATIONAL STUDENT ADMISSIONS

• Application Deadlines

Maharishi University of Management welcomes international student applicants for all the University’s programs. In order to process applications and immigration forms in a timely way, completed applications should be received by the Office of Admissions no less than two months in advance of the start of the school year or program starting date. International students who are interested in applying to Maharishi University of Management should request instructions and admission materials well in advance of this date. Applications may also be submitted online via the University’s website, www.mum.edu.

• Academic Records

An official copy of all records of any previous schooling
(mark sheets, transcripts, diplomas, certificates, etc.) must be submitted as official certified documents directly from each institution. Any photocopies must have the signature of a school official and the school seal. These records must show courses taken and grades earned and must be translated into English if the original records are in another language. When a translation is supplied, the original record must also be included. Translations must be officially certified by a translator or interpreter.

Visa Procedures

When the application for admission is approved, a University acceptance letter and a U.S. Immigration and Naturalization Service I-20 form will be mailed to the applicant. No prospective international student should plan to enter the United States before receiving both a letter of acceptance and an I-20 form. It will be necessary to present these documents at the embassy upon application for a passport and student visa, and again upon arrival at the University. If further documentation is needed in obtaining a student visa, please contact International Student Admissions at the Office of Admissions.

Financial Statement

International students must provide evidence of financial ability to pursue study at Maharishi University of Management before the letter of acceptance and the I-20 form are mailed. Some financial assistance may be available for those who demonstrate academic promise, financial need, and a strong commitment to develop their full potential and the potential of their nations. Students must submit a letter from their bank to the Office of Admissions verifying the availability of funds to meet educational expenses for at least one academic year. Using this verification, the University can then issue a U.S. Immigration and Naturalization Service I-20 form, which the student can use to obtain a student visa.

The U.S. Immigration Service strongly discourages and usually disallows international students from entering the U.S. on a nonstudent visa and then attempting to change visas upon arrival. Therefore, the University has a policy of only registering students who have received the proper student visa.

Health Insurance

Due to the high cost of medical care in the U.S., all international students must purchase health insurance through the University at the time of registration. Students are exempt from this requirement if they can show at registration that they have adequate coverage under their own insurance.

This health insurance requirement is based on our concern that our international students are (1) adequately covered in the event of accident or illness, (2) able to receive the most complete and up-to-date medical care available, and (3) not incurring large financial losses as a result of a medical emergency while in the United States.

English Proficiency

Applicants whose native language is not English are required to take the Test of English as a Foreign Language (TOEFL). To enter most degree programs, students should demonstrate English competency by scoring 550 or above on this test. Some graduate programs require a score of 600 or higher on the TOEFL.

Students may register for the TOEFL and request that their scores be forwarded to the University at the time of the test or by writing to the Educational Testing Service, Box 592, Princeton, New Jersey 08540. The University’s college code number for this purpose is 4497.

SPECIAL PROGRAM ADMISSIONS

Special admissions procedures and requirements for the special courses and programs offered by Maharishi University of Management are described below.

The Science of Creative Intelligence Course

This course is the foundation for all University programs. The Science of Creative Intelligence course (NLS 100 or FOR 500) is the first course for any student coming to the University; however, it can be taken by any interested person (even if not enrolled in a degree program), whenever it is offered, by applying through the Department of Continuing Education.

Special Students

Special Undergraduate Students—Anyone not seeking a degree may take regular undergraduate courses for up to one year. These individualized programs offer the advantages of a Maharishi University of Management education to those who do not wish to enroll as degree-seeking students. Credit is generally transferable to other universities. (Applicants should determine beforehand whether credit is transferable to their school.) Special undergraduate students generally begin their program of study with the Science of Creative Intelligence course (NLS 100). However, in some cases, one or two courses may be taken before this course is required.

Special Graduate Students—Students desiring to take additional study beyond the bachelor’s degree without intending to earn a graduate degree, may apply for admission for nondegree status. Students may transfer up to 8 units of credit earned in this nondegree status to a regular degree program
with the approval of the Academic Standards Committee, the academic department, and the Dean of the Graduate School. For the master’s degree, the final 40 credit units generally must be earned at the University in a degree-seeking status. For the doctoral degree, credit units earned while in this non-degree status will be reviewed by the student’s department faculty and/or advisory committee for possible acceptance as part of the requirements for the degree. Special graduate students generally begin their program of study with the Science of Creative Intelligence course (FOR 500). However, in some cases, one or two courses may be taken before this course is required.

• Junior Year at Maharishi University of Management

Students enrolled in degree programs at other universities are invited to attend Maharishi University of Management for their junior year and add the holistic benefits of the University’s programs to their educational experience. Individually tailored, the Junior Year program generally includes some first-year courses; course work in any of the upper-division major programs; the Science of Creative Intelligence course (NLS 100); and one Forest Academy. A half-year program is available for those who cannot stay for a full academic year.

• Rotating University

Each year several special off-campus courses are offered to upper division students. These courses, led by University faculty, afford students the opportunity to visit different parts of the world and dive deeply into the course material. Whether it is an art course or a course in the Science of Creative Intelligence, the locale is part of the material to be studied. Recent groups have gone to Italy, Switzerland, and India. The travel experience is a large part of each course.

• Special MVS Studies Program

The Special MVS Studies program is offered by Maharishi University of Management in conjunction with the Maharishi Vedic Education Development Corporation (MVED) through reciprocal credit arrangements. Degree-seeking students enroll in these courses under the guidance of their academic advisor. Nondegree students wishing to enroll in a Special MVS Studies course must submit a completed “Special MVS Studies Program Application/Registration” form and a nonrefundable $50 application and registration fee to the Registrar’s Office. Upon receiving verification of satisfactory completion of course work the University will enter credit on the student’s permanent record.

For further details about this program, please refer to “Special MVS Studies Program” under the “College of Maharishi Vedic Science.”

• Continuing Education

Maharishi University of Management offers a variety of daytime, evening, and weekend courses which are designed especially for working and retired people. For further details, please refer to the “Continuing Education” section listed under “Academic Programs.” Individuals interested in participating in this program should contact the Department of Continuing Education.

• Super Radiance in Residence Program

This program is designed to allow individuals the opportunity to take part in both the University’s Research in Consciousness program (group practice of the Transcendental Meditation and TM-Sidhi programs, RC 350, for 0.5 units per month of credit) and a special evening series entitled “Knowledge for Enlightenment.” Participants in the Super Radiance in Residence (SRR) program live on campus either in the dormitories or in Utopia Park. They are required to participate in the University’s Super Radiance program sessions and are entitled to attend the “Knowledge for Enlightenment” program series given each evening. Applicants should contact the Department for the Development of Consciousness at (515) 472-1212 for details on this program.

ADDITIONAL INFORMATION FOR ALL APPLICANTS

• Policies for Practice of the Transcendental Meditation and TM-Sidhi Programs

The Transcendental Meditation program is practiced by all University faculty and staff, as well as by all students as part of their required Research in Consciousness course. Many students, faculty, and staff have learned the advanced Transcendental Meditation-Sidhi program and practice this program as part of their Research in Consciousness program. For the personal benefit of all students, faculty, and staff there are specific policies that support the practice of the Transcendental Meditation and TM-Sidhi programs. Each element of these technologies for the development of consciousness has been carefully structured to produce maximum benefit.

In order to ensure for everyone the integrity and effectiveness of the teaching and practice of the technologies of Maharishi Vedic Science, these technologies are practiced according to the instructions of qualified teachers recognized by Maharishi University of Management, and they are practiced exclusive of other programs and procedures.

• Drug-Free Environment

Education at Maharishi University of Management is
designed to help students become more creative, alert, and awake and to develop optimum health. Therefore, in the students’ best interest, the University requires that all applicants do not use nonprescribed drugs (including marijuana, hallucinogens, amphetamines, and barbiturates) for a minimum of six months prior to enrolling at the University and for the entire time they are enrolled as students.

• Official Acceptance Required before Arriving on Campus
 Maharishi University of Management may defer admission or readmission of a student to any program if such deferral is warranted on the basis of the application or other information. It is very important that students do not come before receiving official acceptance. International students must also have received their U.S. Immigration and Naturalization Service I-20 form from the Office of Admissions before coming to the University.

• Child Care Policy for Students with Children
 The daily academic program at the University—as at any university—is a full schedule, requiring parents to arrange child care during the day. To ensure the comfort of both parents and children, the University has developed certain child care policies, as follows:
 • It is the responsibility of student parents to provide full-time child care if their children do not attend school. Parents must either provide a nanny or provide other full-time care of the children.
 • Student parents must submit a written agreement to the Office of Admissions stating that they will provide adequate child care during their stay at the University, indicating the means by which they plan to do so. This written agreement is a requirement for acceptance.

READMISSION

Former students who have officially withdrawn from the University or who have not been in attendance during the most recent semester should contact the Office of Admissions for an “Application for Readmission.” (Please refer to “Readmission” under “Registration” in the Bulletin.)
The Office of Financial Aid is dedicated to providing all students with as much assistance as possible to help them meet their educational expenses. All students are encouraged to apply for financial aid. In the 2002–2003 academic year, 95% of all full-time students received some form of financial aid. Most financial aid is awarded on the basis of need, but the University provides merit-based scholarships as well. Need is not considered when determining students’ qualification for admission. If students qualify for admission, Maharishi University of Management makes every effort to provide them with a financial aid package generous enough to enable them to attend the University.

For need-based financial assistance, standard nationwide guidelines are used to determine students’ financial need—the difference between what they and their family can reasonably contribute and the actual cost, including personal expenses such as travel and books.

Maharishi University of Management offers a program of federal, state, and University financial assistance for U.S. citizens, and University aid for international students. Scholarships and grants make up the majority of students’ aid packages. For example, U.S. undergraduate students may be eligible for Federal Pell Grants and Federal Supplemental Educational Opportunity Grants, as well as University scholarships, and Iowa Tuition Grants for Iowa residents.

For U.S. students, a variety of loan and work-study options fill any remaining need. Grants and scholarships do not have to be repaid. For most loans, repayment does not begin until six months after students graduate; ten years is the usual repayment period. Work-study awards allow students to pay for a portion of their education by working at a part-time job at the University, usually after classes or on weekends. The average student with a work-study job works 4 to 6 hours a week.

Information on how to apply for student financial aid and further details about available funds are included in the University’s Viewbook, available to all prospective students. The application procedure is simple, and the Financial Aid staff is pleased to help in any way.

CURRENT FINANCIAL AID PROGRAMS

Federal and State Grants:
• Federal Pell Grant
• Federal Supplemental Educational Opportunity Grant
• Iowa Tuition Grant
• Iowa Grant

University Scholarships:
• Trustees’ Scholarship (including Maharishi Institutes of Management Scholarships)
• National Merit Finalist Awards
• Walter Koch Scholarship (for undergraduate students in engineering)
• The University’s Jefferson County Scholarship
• Shelley Hoffman Scholarship
• Ray Prat Music Scholarship
• DeRoy C. Thomas Scholarship
• Volunteer Service Scholarship
• Graduate Fellowship
• Sam McIlhenny Scholarship

Loans:
• Federal Parent Loan (PLUS)
• Federal Stafford Loan
• Federal Perkins Loan

Other Forms of Aid:
• Veterans’ Benefits
• Iowa National Guard Educational Benefits
• Federal College Work-Study
• University Work-Study

If you have any questions about financial aid, please write or call the Office of Admissions (641) 472-1110 or the Office of Financial Aid, telephone: (641) 472-1156, fax: (641) 472-1133, e-mail: finaid@mum.edu.
YEARNLY TUITION

The following charges apply to the 2003–2004 academic year, typically from late August to the end of June. The student tuition includes instruction, supporting services, and accident insurance.

<table>
<thead>
<tr>
<th>Yearly Rate</th>
<th>Standard Yearly Rate</th>
<th>Standard Yearly Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$23,600</td>
<td>$23,600</td>
</tr>
<tr>
<td>Single Room</td>
<td>2,720</td>
<td>2,720</td>
</tr>
<tr>
<td>Board</td>
<td>2,480</td>
<td>2,480</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$28,800</td>
<td>$28,800</td>
</tr>
</tbody>
</table>

Entry level Ph.D. students pay the standard tuition graduate rate; Ph.D. Candidates pay 50% of the standard tuition graduate rate; Ph.D. Researchers pay $2,000 per year for tuition.

Students in Standard Programs register for 3.0 to 4.0 units per block. Other students, please refer to the section entitled “Semester Tuition for Nonstandard Programs” below. Co-op students see separate “Program Agreement.”

BOARD POLICIES

All students who live on campus are required to pay for full board which consists of three meals per day, seven days per week. All meals (breakfast, lunch, and dinner, seven days per week) are included in the charge for on-campus students.

Note: The above board charges do not cover the two-week winter holiday or the six-week summer holiday.

HOUSING POLICIES

Single undergraduate students are required to live on campus. All graduate students, and undergraduates over 25 years of age, have the option of living in Utopia Park, a mobile home park located adjacent to campus. Exceptions to this housing requirement may be requested when extenuating circumstances exist—for example, when students wish to live with their parents.

Any student who plans to live in Utopia Park or off campus must petition the Academic Standards Committee in advance of the beginning of the academic year indicating the reason for the exception to the normal housing policy and the address where they intend to live.

Note: The above room charges do not cover the two-week winter holiday or the six-week summer holiday.

SENIOR CITIZEN DISCOUNT

Senior citizens over the age of 60 at the time of registration may receive a one-third (1/3) reduction in their tuition and room charges for academic programs. There is no reduction in board charges.

SPECIAL FEES

Academic Records Reproductions (per page) $0.10
Academic Records Certified Copies (per page) $2
Academic Transcript Fee $10 for 1 copy, $3 for additional

Transcripts are not issued if the student has a balance due with the University, or is in default on a Perkins or Stafford loan. (Please allow one week for processing.)
Application Fee (nonrefundable)
 Undergraduate and Certificate Students $25
 Graduate Students $40
 Transferring or readmitting to other programs $10
 Automobile Registration Fee (nonrefundable)(per year) $50

Changes of Registration Fee $35
 This fee is paid for any changes to tuition, room, or board charges which occur after a student is registered.

Graduation Fee (refundable) $25
 This fee is paid at the time of graduation. It can be refunded if the student does not graduate.

International Student Health Insurance (nonrefundable) $720
 All international students are required to have health insurance. Students who present proof of insurance are exempt. Minimum partial enrollment payment for three months of insurance.

Lab Fee ... varies
 Some courses have these fees associated with them. The lab fee for any specific course is listed in its course description.

Late Registration Fee $35
 Paid by continuing students who arrive before their financial aid and class schedule have been finalized.

Late Payment Fee (assessed for each month payment is late) $50

Lost ID Badge Fee ... $5

Materials Fee .. varies
 Some courses charge this fee to cover the cost of materials needed to complete the course. Such fees are listed in the course description and are charged at the beginning of the course.

Security Deposit (refundable) $100
 All students pay this fee which is transferred from one semester to the next and is used to cover any damages or unpaid fines. It is refunded at the end of enrollment minus any unpaid charges.

Student Fees (nonrefundable) $430
 Fees include Student Government Activities fees, Student Athletic Facilities fee, and a technology fee. Students filling staff positions for the University receive a 60% discount.

Tuition Deposit (refundable) $100

REDUCTION IN CHARGES & REFUND POLICIES

Reduction in Charges for Withdrawal from Courses
 Reduction in charges for course withdrawals occur for students in Standard Programs who were registered for 20 or more units and are withdrawing from more than one block (4 weeks) of unattended courses in a semester, or any unattended class withdrawals which would change a student’s enrollment status (requires a change in registration, charges, and financial aid). Nonstandard students may request a reduction of charges to $275/unit when there are two or more months in a semester of unattended courses. Co-op students see separate “Program Agreement.”

Reduction of Room and Board Charges for Students
Moving Off Campus During a Semester
 Students wishing to move off campus or to Utopia Park after they have registered must first obtain approval from the Academic Standards Committee, and then must request a change in Registration at the Enrollment Center. There is a change of registration fee of $35.

REDUCTION IN CHARGES BASED ON
WITHDRAWAL FROM THE UNIVERSITY

Students withdrawing during their first course in a semester may have their semester charges (tuition, Student Activities fee, Athletic fee, room, and board) reduced, or recalculated in proportion to the time attended versus registered (see below). When charges are reduced, financial aid is also reduced.

• Official notification of withdrawal from the University during the first course of the semester requires filling out a “University Withdrawal” form and submitting it to the Registrar. The date the student begins this process is the official withdrawal date. The percentage of time attended is defined by the number of calendar days in the semester (or period of time for which the student was charged) divided by the number of calendar days from the start of the semester to the official date of withdrawal. The semester charges are reduced or recalculated to be the percentage of time attended multiplied by the original semester charges. After the first course in a semester, see “Reduction Charges for Course Withdrawals.”

Other Points Regarding Charges
• Students with a remaining balance due to the University must pay it before leaving the University or contact the Student Accounts Office to make other arrangements.
• If students are requested to withdraw from the University because of poor academic standing or for disciplinary reasons, reduction in charges is the same as for other withdrawals.
• An appeals process for review of specific cases is available by filing a Financial Review Board Petition form, available from either the Registrar’s Office or the Financial Aid Office.
For more information on these policies, their application, and refund examples, please contact the Financial Aid Office.

PAYMENT PLANS

Students may pay their charges for the semester in one of two ways:

1) Full payment on or before the day the student registers, or

2) Payments may be made in four equal installments per semester with a $10 service charge per installment.
 • Fall semester: the first payment at registration, then October 1, November 1, and December 1
 • Spring semester: the first payment at registration, then March 1, April 1, and May 1

NOTE: There is a fee of $50 for late payment of installments.

PAYMENT PROCEDURES

Please make checks payable to Maharishi University of Management. Only checks drawn on U.S. banks using U.S. currency will be accepted. Please do not send cash. Wire transfers to a student’s account can also be arranged ($7.50 extra); the University Student Accounts Office at (515) 472-7000 ext. 4247 can provide details. When making payments the following information is needed on a separate sheet of paper:

1) the name and student ID number of the student for whom the payment is made,
2) the amount enclosed,
3) the reason for payment
4) the period of the payment, and
5) a return address. All payments are to be mailed to: Student Accounts Office, Maharishi University of Management, Fairfield, IA 52557.
DIRECTORIES
INTERNATIONAL BOARD OF TRUSTEES

Bevan Morris
Minister of Enlightenment, Global Country of World Peace
B.A., M.A., Psychology and Philosophy, Gonville and Caius College, Cambridge University (England) • M.S.C.I., D.S.C.I., Maharishi European Research University • Doctor of World Peace, Maharishi University of World Peace • International President of Maharishi Vedic Universities • President and Chairman of the Board of Trustees, Maharishi University of Management, U.S.A. • President of the Maharishi Global Development Fund • President of the Maharishi World Peace Fund • Chairman of the Board of Directors of Maharishi School of the Age of Enlightenment • Fairfield, Iowa

Jeffrey Abramson
Partner, The Tower Companies, Silver Spring, Maryland • Potomac, Maryland

Ramani Ayer
B. Tech., Chemical Engineering, Indian Institute of Technology • M.A., Ph.D., Chemical Engineering, Drexel University • Board member of the American Institute for Chartered Property Casualty Underwriters/Insurance Institute of America, Insurance Information Institute, The Financial Services Roundtable, Hartford Hospital; Trustee of the Mark Twain House in Hartford, Connecticut • Chairman and CEO of the Hartford Financial Services Group, Inc. • Hartford, Connecticut

Marsh Belden
Professional Degree, Petroleum Engineering, Colorado School of Mines • Trust Manager • Canton, Ohio

Yogii Bhardwag
B.S., M.S., Science, GNU University, Punjab India • M. Engineering, Northwestern University • Doctorate of Business Honorarius, City University, California • President, National Petroleum Inc. • Chicago, Illinois, and Kenosha, Wisconsin

Michael Dillbeck
Minister of Primary and Secondary Education, Global Country of World Peace
B.A., Benedictine College • M.S., Ph.D., Purdue University • Doctorate of World Peace, Maharishi University of World Peace • International Vice President • Director of Curriculum of Maharishi Vedic Universities • Fairfield, Iowa

Susan Levin Dillbeck
B.A., University of Illinois • M.A., Ph.D., University of California at Berkeley • International Vice President • Director of Curriculum of Maharishi Vedic Universities • Fairfield, Iowa

Michael Dimick
B.S.C.I., Maharishi European Research University • M.B.A., Maharishi International University • Businessman • Fairfield, Iowa

Barbara L. Dreier (Bobbie)
A.B., English Literature and History of Art, Bryn Mawr College • Homemaker • Fairfield, Iowa

Josephine B. Fauerso
B.S., Education, University of California at Berkeley • M.Ed., Maharishi International University • Educator, Businesswoman • San Antonio, Texas

Nat Goldhaber
B.A., Interdisciplinary Studies, Maharishi University of Management • M.Ed., University of California at Berkeley • Vice Chairman, MyPoints.com, San Francisco, California • Berkeley, California

Fred Gratzon
B.A., Art, Rutgers University • M.S.C.I., Maharishi European Research University • Doctorate of Maharishi Master Management, Maharishi European Research University • Fairfield, Iowa

John Hagelin
Minister of Science and Technology, Global Country of World Peace
A.B. summa cum laude, Dartmouth College • A.M., Ph.D., Harvard University • Doctorate of World Peace, Maharishi University of World Peace • Director of the Institute of Science, Technology and Public Policy • Professor of Physics • Fairfield, Iowa

Christopher W. Hartnett
Minister of World Peace, Global Country of World Peace
B.A., Interdisciplinary Studies, Maharishi University of Management • Doctorate of Business Management, Maharishi European Research University • Doctorate of World Peace,
Maharishi University of World Peace • Chairman of Global Central Bank, Global Country of World Peace • Boone, North Carolina

Bruce Hauptman
B.S.C.I., Maharishi European Research University • Founder and CEO of B. Hauptman & Associates, LLC; Board of Directors of Transilica, Inc., Lakshmi Technologies, LLC; General Partner of the Gamelan Capital Fund, L.P. • Fairfield, Iowa

Vernon Katz
Minister of Spiritual Development, Global Country of World Peace
B.A., Ph.D., Oxford University, England • Doctorate of World Peace, Maharishi University of World Peace • Adjunct Professor of the Science of Creative Intelligence and Philosophy, Maharishi University of Management • Writer • London, England

Carolyn Gaylord King
B.A., Southern Arkansas University • M.A., Ph.D., University of Michigan • Associate Professor of Social Psychology, Maharishi University of Management • Fairfield, Iowa

Charley Lieb
B.A., Sociology, Brandeis University • M.B.A., Columbia University • C.P.A., New York State • Money Manager • Boone, North Carolina

David Lynch
Doctor Honorary, The Royal College of Art, England • Film Director • Los Angeles, California

Ted McLaughlin
B.A., Accounting, University of Dayton • CFO, Books Are Fun • Fairfield, Iowa

Max Raines
Minister of Justice, Global Country of World Peace
M.A., Education, Indiana University • Ph.D., Education, Michigan State University; Professor Emeritus, Michigan State University; Doctorate of World Peace, Maharishi University of World Peace • East Lansing, Michigan

Steve Rubin
Minister of Energy and Natural Resources, Global Country of World Peace
B.A., Art, Brown University • Doctorate of World Peace, Maharishi University of World Peace • Chairman, United Fuels International, Inc.

Tom Stanley
B.S.C.I., Maharishi European Research University • Financial Consultant, Fairfield Investment Corporation • Fairfield, Iowa

Girish C. Varma
Minister of Higher Education, Global Country of World Peace
B.Sc., Biology, Rani Durgawati University, Jabalpur • LL.B., Rani Durgawati University, Jabalpur • B. Mus. (Sitar), Bhatkhande Sangeet Mahavidyalaya affiliated with Indira Kala, Sangeet University, Khairagarh • Ph.D., Management, Maharishi European Research University, Switzerland • Doctorate of World Peace, Maharishi University of World Peace • Vlodrop, Holland

David Verrill
Treasurer and Corporate Secretary, Maharishi Global Administration through Natural Law—U.S. • Pacific Palisades, California

Keith Wallace
Minister of Research and Development, Global Country of World Peace
B.S., Physics, Ph.D., Physiology, University of California at Los Angeles • Doctorate of World Peace, Maharishi University of World Peace • Professor of Physiology and Director of Research (International), Maharishi University of Management • Fairfield, Iowa

Robert G. Wynne
B.A., Stanford University • S.M., Massachusetts Institute of Technology • Vice President for Expansion, Maharishi University of Management • Mayor of Maharishi Vedic City • Fairfield, Iowa

216
UNIVERSITY OFFICERS

Bevan Morris
President
International President of Maharishi Vedic Universities • President and Chairman of the Board of Trustees of Maharishi University of Management, U.S.A. • President of the Maharishi Global Development Fund • President of the Maharishi World Peace Fund • Chairman of the Board of Directors of Maharishi School of the Age of Enlightenment • B.A., M.A., Psychology and Philosophy, Gonville and Caius College, Cambridge University (England) • M.S.C.I., D.S.C.I., Maharishi European Research University • Doctorate of World Peace, Maharishi University of World Peace

Michael Dillbeck
International Vice President
Director of Curriculum of Maharishi Vedic Universities • B.A., Benedictine College • M.S., Ph.D., Purdue University

Susan Levin Dillbeck
International Vice President
Director of Curriculum of Maharishi Vedic Universities • B.A., University of Illinois • M.A., Ph.D., University of California at Berkeley

Craig Pearson
Executive Vice President
B.A., Duke University • M.S.C.I., Maharishi European Research University • M.A., Maharishi International University • M.A.W., University of Iowa • Ph.D., Maharishi University of Management

Robert G. Wynne
Vice President for Expansion
B.A., Stanford University • S.M., Massachusetts Institute of Technology

Maureen M. Wynne
Vice President for Expansion
B.A., Trinity University • J.D., University of Texas Law School

David Todt
Director of Special Projects for the President’s Office
B.A., Maharishi International University

Thomas L. Brooks
Director of Administration
B.S., Michigan State University

Bradford M. Mylett
Executive Director of Institutional Advancement
B.A., Maharishi International University

Scott Herriott
Academic Council Chair and Dean of Faculty
B.A. summa cum laude, Dartmouth College, 1975 • M.A., Ph.D., Stanford University, 1979, 1984

Nicholas Rosania
Development Council Chair
B.A., Western Washington State University • M.A., Maharishi University of Management

Sandra Rosania
Development Council Chair
B.A., Western Washington State University • M.A., Maharishi University of Management

UNIVERSITY COUNCIL

Bevan Morris
President
B.A., M.A., Psychology and Philosophy, Gonville and Caius College, Cambridge University (England) • M.S.C.I., D.S.C.I., Maharishi European Research University

Craig Pearson
Executive Vice President
B.A., Duke University • M.S.C.I., Maharishi European Research University • M.A., Maharishi International University • M.A.W., University of Iowa • Ph.D., Maharishi University of Management

Robert G. Wynne
Vice President for Expansion
B.A., Stanford University • S.M., Massachusetts Institute of Technology

Maureen M. Wynne
Vice President for Expansion
B.A., Trinity University • J.D., University of Texas Law School

David Todt
Director of Special Projects for the President’s Office
B.A., Maharishi International University

Thomas L. Brooks
Director of Administration
B.S., Michigan State University

Bradford M. Mylett
Executive Director of Institutional Advancement
B.A., Maharishi International University

Scott Herriott
Academic Council Chair and Dean of Faculty
B.A. summa cum laude, Dartmouth College, 1975 • M.A., Ph.D., Stanford University, 1979, 1984

Nicholas Rosania
Development Council Chair
B.A., Western Washington State University • M.A., Maharishi University of Management

Sandra Rosania
Development Council Chair
B.A., Western Washington State University • M.A., Maharishi University of Management
ACADEMIC DEANS

Scott Herriott
Dean of Faculty
Professor of Management • B.A. summa cum laude, Dartmouth College, 1975 • M.A., Ph.D., Stanford University, 1979, 1984

Patricia Robinson
Associate Dean of Faculty
Assistant Professor of Psychology • B.A., Kansas University, 1971 • M.A., Maharishi International University, 1982 • Ph.D., Kansas University, 1992

Fred Travis
Dean of the Graduate School
Assistant Professor of Maharishi Vedic Science • B.S., Cornell University, 1976 • M.S., Ph.D., Maharishi International University, 1986, 1988

Catherine Gorini
Dean of the College of Arts and Sciences
Professor of Mathematics, Chair of the Department of Mathematics • A.B., Cornell University, 1971 • M.S., Ph.D., University of Virginia, 1977, 1982

James Grant
Dean of the College of Arts and Sciences

Denise Denniston Gerace
Dean of the College of Maharishi Vedic Science
Assistant Professor of Maharishi Vedic Science, and Education • Chair of the Department of Maharishi Vedic Science • Co-Director of the Doctoral Program in Maharishi Vedic Science • B.A., University of Arizona, 1969 • M.S.C.I., Maharishi European Research University, 1976 • M.A., Ph.D., University of California at Berkeley, 1984, 1988

Samuel Boothby
Dean of Teaching and Learning
Associate Professor of Maharishi Vedic Science, and Education • Director of the Center for Educational Excellence • B.A., Kalamazoo College, 1971 • M.A., Maharishi International University, 1982 • Ed.D., Harvard Graduate School of Education, 1988

Dennis Heaton
Dean of Distance Education and International Programs
Professor of Management, • B.A., University of Notre Dame, 1969 • M.A., West Georgia College, 1971 • Ed.D., Boston University, 1984

Robert Schneider
Dean of the College of Maharishi Vedic Medicine
Professor of Maharishi Vedic Medicine and Physiology • Director of the Institute for Natural Medicine and Prevention • B.A., Antioch College, 1977 • M.D., New Jersey Medical School, 1981

Ron Barnett
Dean of Admissions
B.S.C.I., Maharishi European Research University, 1980

FACULTY

Douglas Adams
Instructor of Fine Furniture Making • B.S., Nassan College, 1973

Victoria Kurth Alexander
Associate Professor of Law and Government • Chair of the School of Business and Public Administration • Director of the Institute for Research on Higher States of Consciousness • B.A., Wellesley College, 1972 • J.D., Boston University School of Law, 1978 • LL.M., New York University School of Law, 1984

Naomi Baer-Lerman
Instructor of Maharishi Vedic Science • M.A., M.A., Maharishi International University, 1981, 1984

Geoffrey Baker
Associate Professor of Art • N.D.D., A.T.D., Cardiff College of Art (Wales), 1951, 1952

James Bates
Senior Librarian, Instructor of Business Research • B.A., Birmingham-Southern College, 1957 • M.S.L.S., University of North Carolina, 1960

Matthew Beaufort
Assistant Professor of Art, Associate Chair of the School of
the Arts • B.A., Yale University, 1969 • M.A., M.A., Maharishi International University, 1978, 1990

Samuel Boothby
Associate Professor of Maharishi Vedic Science, and Education • Dean of Teaching and Learning • Director of the Center for Educational Excellence • B.A., Kalamazoo College, 1971 • M.A., Maharishi International University, 1982 • Ed.D., Harvard Graduate School of Education, 1988

Ralph Bunker
Assistant Professor of Computer Science • B.S., M.S., University of Rhode Island, 1979, 1980 • Ph.D., University of Massachusetts at Amherst, 1986

Dan Burks
Instructor of Exercise and Sport Science • B.A., Drury College, 1971 • M.A., West Virginia University, 1980

Michael Peter Cain

Kenneth Cavanaugh
Professor of Applied Statistics • A.B. cum laude, Yale University, 1964 • M.P.A., Woodrow Wilson School of Public and International Affairs, Princeton University, 1969 • M.A., Stanford University, 1973 • Ph.D., University of Washington, 1983

Juliette Daley
Assistant Professor of Art • B.A., Southern Illinois University, 1972 • M.A., M.F.A., Maharishi University of Management, 1995, 1996

Ken Daley
Associate Professor of Exercise and Sport Science, Chair of the Department of Exercise and Sport Science • B.P.E., M.Ed., University of New Brunswick (Canada), 1974, 1981

Neeraja Deshpande
Instructor of Electrical Engineering • B.E., Government Engineering College, 1994 • Diploma in Computer Science, Bhopal, India, 1999

Wally DeVasier
Instructor of Maharishi Vedic Science • B.S.C.I., Maharishi European Research University (Switzerland), 1979

Mousumi Dey
Assistant Professor of Maharishi Vedic Medicine and Physiology • M.B.B.S., N.R.S. Medical College, Calcutta, India, 1986; D.P.H., All India Institute of Hygiene, 1997

John Dinkel
Instructor of Engineering • B.S., University of Colorado • M.S., University of Iowa, 1993

Dale Divoky
Assistant Professor of Art • B.F.A., Alfred University, 1973

Anne Dow
Associate Professor of Mathematics • B.A. first class honors, University of British Columbia (Canada), 1964 • M.A., University of Western Ontario (Canada), 1965 • Ph.D., University of Queensland (Australia), 1973

Thomas Egenes
Associate Professor of Maharishi Vedic Science and Sanskrit • B.A., University of Notre Dame, 1973 • M.A., Maharishi International University, 1979 • M.A., Ph.D., University of Virginia, 1978, 1985

James Fairchild
Assistant Professor of Literature and Writing • B.A., Brigham Young University, 1967 • M.A., University of Utah, 1983 • Ph.D., University of Iowa, 1991

Terry Fairchild
Associate Professor of Literature • Chair of the Department of Literature and Writing • Editor of *Modern Science and Vedic Science* • B.A., University of Nevada, 1975 • M.A., University of Utah, 1983 • Ph.D., University of Iowa, 1990

Evan Finkelstein
Instructor of Maharishi Vedic Science • B.A., Carnegie-Mellon University, 1971 • M.S.W., Yeshiva University, 1984 • M.S.C.I., Maharishi International University, 1993 • Ph.D. Candidate, Maharishi University of Management

David Fisher
Assistant Professor of Botany • B.S., North Carolina State University at Raleigh, 1971 • M.S., Ph.D., University of Wisconsin, 1975, 1981

Peter Freund
Director of the Tape Library • Director of Vedic Literature Computerization Project • B.A., Antioch College, 1974 • M.S.,
Pennsylvania State University, 1980 • M.S., Maharishi European Research University, 1981

Gerald Geer
Administrator, Institute for Science, Technology, and Public Policy, Adjunct Instructor of Writing • A.B. magna cum laude, Harvard College, 1972

Denise Denniston Gerace
Assistant Professor of Maharishi Vedic Science and Education • Dean of the College and Chair of Maharishi Vedic Science • Director of the Doctoral Program in Maharishi Vedic Science • B.A., University of Arizona, 1969 • M.S.C.I., Maharishi European Research University, 1976 • M.A., Ph.D., University of California at Berkeley, 1984, 1988

William Goldstein
University Legal Counsel • Assistant Professor of Law and Government • B.A., Colby College, 1972 • J.D., University of San Diego School of Law, 1978

David Goodman
Assistant Professor of Management • B.A., McGill University (Canada), 1976 • M.B.A., Maharishi International University, 1990 • Ph.D., Maharishi University of Management, 1996

Rachel Goodman
Assistant Professor of Psychology • Director of Career Planning • M.A., M.S., Maharishi International University, 1986, 1991 • Ph.D., Maharishi University of Management, 1997

Catherine Gorini
Professor of Mathematics • Chair of the Department of Mathematics • Dean of the College of Arts and Sciences • A.B., Cornell University, 1971 • M.S., Ph.D., University of Virginia, 1977, 1982

William Graff
Assistant Professor of Accounting • Associate Chair of the Department of Management • B.S., Virginia Polytechnic Institute, 1975 • M.A., M.B.A., Maharishi International University, 1979, 1985 • C.M.A., 1990

James Grant

Gregory Guthrie
Professor of Computer Science • Chair of the Department of Computer Science • B.S., M.S., Ph.D., Purdue University, 1972, 1975, 1978

Shepley Hansen
Director of Design for Maharishi University of Management Press • Associate Professor of Art • B.F.A., University of Kansas, 1974 • M.S.C.I., Maharishi European Research University, 1977

Dennis Heaton
Professor of Management • Dean of Distance Education and International Programs • B.A., University of Notre Dame, 1969 • M.A., West Georgia College, 1971 • Ed.D., Boston University, 1984

Scott Herriott
Professor of Management • Dean of Faculty • B.A. summa cum laude, Dartmouth College, 1975 • M.A., Ph.D., Stanford University, 1979, 1984

Samuel James
Associate Professor of Biology • Chair of the Department of Life Sciences • A.B. summa cum laude, Dartmouth College, 1975 • M.A., Ph.D., University of Michigan, 1978, 1983

Christopher Jones
Associate Professor of Education • Chair of the Department of Education • B.A., Oberlin College, 1969 • M.A., Temple University, 1972 • Ed.D., Teachers College, Columbia University, 1979

James Karpen
Associate Professor of Professional Writing • B.S., Augustana College, 1972 • B.A. cum laude, Maharishi International University, 1979 • M.A., Ph.D., Bowling Green State University, 1981, 1984

Gurdon Leete
Assistant Professor of Art • B.F.A., M.F.A., San Francisco Art Institute, 1972, 1977

Joe Lerman
Instructor of Computer Science • B.S., Boston University, 1976 • M.S., Maharishi University of Management, 1995

Michael Lerom
Assistant Professor of Chemistry • B.S., University of Wash-
Keith Levi
Associate Professor of Computer Science • Associate Chair of the Department of Computer Science • B.A. summa cum laude, Maharishi International University, 1979 • M.A., M.S., Ph.D., University of Michigan, 1981, 1981, 1985

Isabelle Matzkin
Instructor of Maharishi Gandharva Veda Music • B.M., M.A., University of Iowa, 1988

Bruce McCollum

Steven McLaskey
Assistant Professor of Biology and Agriculture • B.S.C.I., Maharishi European Research University, 1978 • B.S., Maharishi International University, 1989 • M.S., Ph.D., Cornell University, 1994, 1997

Liis Mattik
Instructor of Maharishi Vedic Medicine • B.A., Physiology, Maharishi Vedic University, Tatarstan, Russia, 1996 • M.S.C.I., Maharishi University of Management, 2000

Patricia Minkler
Assistant to the Dean of Faculty • B.A., Smith College, 1966 • M.A., Maharishi International University, 1988

Paul Morehead
Instructor of Maharishi Vedic Medicine • B.S.C.I., Maharishi European Research University (Switzerland), 1977 • M.A., Maharishi International University, 1988

Bevan Morris
Minister of Enlightenment, Global Country of World Peace • B.A., M.A., Psychology and Philosophy, Gonville and Caius College, Cambridge University (England), 1975, 1979 • M.S.C.I., D.S.C.I., Maharishi European Research University, 1976, 1979 • Doctor of World Peace, Maharishi University of World Peace • International President of Maharishi Vedic Universities • President and Chairman of the Board of Trustees, Maharishi University of Management, U.S.A. • President of the Maharishi Global Development Fund • President of the Maharishi World Peace Fund • Chairman of the Board of Directors of Maharishi School of the Age of Enlightenment

Michael Murphy
Instructor of Education and Professional Writing • Technology Coordinator • B.A. cum laude, State University of New York, 1977 • M.A., Maharishi International University, 1994

Lois H. Neate
Instructor of Maharishi Vedic Science • B.S., Medical College of Georgia, 1969 • M.S., Mississippi University for Women, 1974 • M.A., Maharishi University of Management, 1999

Richard Neate
Assistant Professor of Engineering • Director of Admissions • B.S., U.S. Air Force Academy, 1967 • M.S., Stanford University, 1968

Randi Nidich
Associate Professor of Maharishi Vedic Science, and Education • B.A., M.A., Maharishi International University, 1982, 1983 • Ed.D., University of Cincinnati, 1985

Craig Pearson
Executive Vice President • Associate Professor of Professional Writing • B.A., Duke University, 1971 • M.S.C.I., Maharishi European Research University, 1978 • M.A., Maharishi International University, 1979 • M.A.W., University of Iowa, 1983 • Ph.D., Maharishi University of Management, 2002

Jan Ramberg
Assistant Professor of Maharishi Vedic Medicine • B.S., M.A., Maharishi International University, 1987, 1988 • Ph.D., Maharishi University of Management, 1999

Patricia Robinson
Assistant Professor of Psychology • Associate Dean of Faculty • B.S., Kansas University, 1972 • M.A., Maharishi International University, 1983 • Ph.D., Kansas University, 1992

Clyde Ruby
Instructor of Computer Science • B.A., Pepperdine University, 1968 • M.A., M.S., Maharishi International University, 1987, 1991

Susan Runkle
Dean of Women • Instructor of Maharishi Vedic Science • B.A., Queens University, Ontario, 1975 • M.A., Maharishi University of Management, 1995
John Salerno
Research Assistant Professor • Assistant Director of the Institute for Natural Medicine and Prevention • B.S., Indiana University of Pennsylvania, 1976 • M.A., Ph.D., Maharishi International University, 1988, 1991

David Sands
Associate Professor of Maharishi Vedic Medicine and Physiology • Associate Dean of Academic and Clinical Affairs for the College of Maharishi Vedic Medicine • Associate Chair of the Department of Physiology • B.A., Brandeis University, 1965 • M.S., University of Pennsylvania, 1968 • M.D., University of Iowa, 1978

Diane Sanny
Registrar • A.A., Mott College, 1969

Marielle Savard
Assistant Professor of Agricultural Economics • B.S., M.S., McGill University, 1982, 1989 • Ph.D., University of British Columbia, 1997

Jane Schmidt-Wilk
Assistant Professor of Management • B.A., Oberlin College, 1972 • M.B.A., Maharishi International University, 1988 • Ph.D., Maharishi University of Management, 1996

Claude Setzer
Associate Professor of Engineering • Chair of the Department of Engineering • B.S., M.E., Ph.D., University of Virginia, 1971, 1977, 1981

Craig Shaw
Senior Librarian II, Library Director • B.S., University of Michigan, 1970 • M.A., Maharishi International University, 1979 • M.L.S., University of Iowa, 1982

James Shrosbree
Associate Professor of Art • Chair of the School of the Arts • B.F.A., Boise State University, 1971 • M.F.A., University of Montana, 1973

David Streid
Associate Professor of Mathematics, Associate Chair of the Department of Mathematics • B.A. summa cum laude, Maharishi International University, 1980 • M.S., Ph.D., University of Illinois at Urbana, 1982, 1990

Kent Sugg
Assistant Professor of Performing Arts • B.A., Loretto Heights College, 1981 • M.A., Maharishi University of Management, 1998

Deborah Thompson
First-Year Curriculum Coordinator, Instructor of Maharishi Vedic Science • B.A. with upper second-class honors, University of the West Indies, 1983 • Foreign Language Education Diploma, Ministry of Education of Trinidad, 1988 • M.A., Maharishi University of Management, 1998

Richard Thompson
Instructor of Management • B.A., Diploma of Education, University of West Indies, 1980, 1987 • M.B.A., Maharishi University of Management, 1996, Ph.D. Candidate, Maharishi University of Management

Robin Ticciati
Associate Professor of Computer Science • B.A. with first class honours, M.A., Oxford University (England), 1972, 1978 • Ph.D., Harvard University, 1984

Christian Tourenne
Assistant Professor of Physics • Chairman of the Dept. of Physics • B.S., M.S., D.E.A., Ph.D., University of Bordeaux (France), 1971, 1972, 1973, 1974

Frederick Travis
Associate Professor of Maharishi Vedic Science, Dean of the Graduate School, Director of the EEG/Psychophysiology Center • B.S., Cornell University, 1976 • M.S., Ph.D., Maharishi International University, 1986, 1988

Keith Wallace
Director of Research (International), and Trustee, Maharishi University of Management, Professor of Physiology • B.S., Ph.D., University of California at Los Angeles, 1967, 1970

Kenneth West
Assistant Professor of Management • B.A., M.B.A., Maharishi International University, 1975, 1988 • M.S.C.I., Maharishi European Research University, 1977

Kristine Wood
Director of the Research in Consciousness Program • B.S., University of Iowa, 1971
Maureen Wynne
Vice President for Expansion, Professor of Management •
B.A., Trinity University, 1968 • J.D., University of Texas Law School, 1970

Robert Wynne
Vice President for Expansion, Professor of Management •
B.A., Stanford University, 1971 • S.M., Massachusetts Institute of Technology, 1973 • Ph.D., Maharishi European Research University, 2002

Joel Wysong
Assistant Professor of Education • Dean of Men • Chair of Student Affairs Council • Evaluation Coordinator • B.A., Hartwick College, 1972 • M.A., Maharishi International University, 1981 • Ph.D., Cornell University, 2000

RESEARCH

Alarik Arenander
Director, Brain Research Institute under the Institute of Science, Technology and Public Policy • B.S., M.S., University of Wisconsin, 1967, 1971 • Ph.D., UCLA, 1980

Ragnhild Boes

John Hagelin
Director of the Institute of Science, Technology and Public Policy, Professor of Physics, Director of the Doctoral Program in Physics • A.B. summa cum laude, Dartmouth College, 1975 • A.M., Ph.D., Harvard University, 1976, 1981

Carolyn Gaylord King
Associate Professor of Psychology, Trustee of Maharishi University of Management • B.A., Southern Arkansas University, 1969 • M.A., Ph.D., University of Michigan, 1974, 1976

Sanford Nidich
Professor of Maharishi Vedic Medicine, and Education •
Associate Dean for Research for the College of Maharishi Vedic Medicine • Associate Director of the Center for Natural Medicine and Prevention • B.A. summa cum laude, M.A., Ed.D., University of Cincinnati, 1973, 1974, 1975

David Orme-Johnson
Adjunct Research Professor • Institute for Natural Medicine and Prevention • A.B., Columbia University, 1963 • M.A., Ph.D., University of Maryland, 1965, 1969

Diane Prather-Huff
Assistant Research Professor • B.G.S., University of Kansas, 1977 • O.D., University of Houston, 1981 • M.P.H., University of Texas, 1985

Maxwell Rainforth
Assistant Professor of Maharishi Vedic Medicine and Statistics • B.Sc. (Honors), University of Canterbury (New Zealand), 1977 • M.A., M.S., Maharishi International University, 1986, 1989, Ph.D., Maharishi University of Management, 2000

Amparo Castillo-Richmond
Assistant Professor of Maharishi Vedic Medicine and Physiology • M.D., Pontisicla Javeriana University (Colombia), 1982 • M.S., Maharishi International University, 1994

Robert Schneider
Professor of Maharishi Vedic Medicine and Physiology • Dean of the College of Maharishi Vedic Medicine • Chair of the Department of Physiology • Director of the Institute for Natural Medicine and Prevention • B.A., Antioch College, 1977 • M.D., New Jersey Medical School, 1981

Mary Zeilbeck

FELLOWS

Graham deFreitas
Postdoctoral Fellow, Dept. of Maharishi Vedic Science •
Assistant Professor of Maharishi Vedic Science • B.A., Cambridge University, 1967 • M.S., Michigan State University, 1972 • M.F.A., University of Utah, 1975 • M.A., Ph.D., Maharishi University of Management, 1996, 2002
Robert Herron
SCI Fellow for the Institute of Science, Technology and Public Policy • B.A., Augusta College, 1975 • M.S.C.I., Maharishi European Research University, 1981 • M.B.A., Ph.D., Maharishi International University, 1985, 1993

Robert Oates
SCI Fellow for the Institute of Science, Technology, and Public Policy • B.A., University of Southern California • M.S.C.I., Ph.D., Maharishi University of Management, 2001, 2002

Kenneth Walton
Senior Fellow for the Institute for Natural Medicine and Prevention • B.S., University of Georgia, 1962 • Ph.D., Vanderbilt University, 1970

ADJUNCT FACULTY

Paula Armstrong
Adjunct Instructor of Education • B.A., Tulane University, 1976 • M.A., University of Michigan, 1977

Ali Arsenjani
Adjunct Instructor of Computer Science and Management • B.A., M.S., Azad University (Iran), 1991, 1994

Michael Blitz
Adjunct Instructor of Management • B.A., Webster College, 1974

Gillian Brown
Adjunct Assistant Professor of Art • B.A., Brown University, 1973 • M.E.A., Rhode Island School of Design, 1977 • M.F.A., University of California at Los Angeles, 1980

Robert W. Boyer
Adjunct Assistant Professor of Psychology • B.A., UCLA, 1969 • M.S.C.I., Maharishi European Research University, 1978 • M.A., California State University at Northridge, 1981 • Ph.D., University of Oklahoma, 1984

Nynke Doetjes
Adjunct Instructor of Professional Writing and Literature • B.A., Maharishi International University, 1986 • M.A., San Francisco State University, 1992

Cathy L. Zeien Dubois
Associate Professor of Management • B.S., University of Texas, 1976 • Ph.D., University of Minnesota, 1991

Linda Egenes
Adjunct Instructor of Professional Writing • B.S., Illinois State University, 1975 • M.A., M.A., Maharishi International University, 1979, 1987

Meg Fitz-Randolph
Adjunct Assistant Professor of Writing • B.A., Colby College, 1967 • M.F.A., Warren Wilson College, 1993

Eric Hart
Adjunct Associate Professor of Mathematics and Mathematics Education • B.S., Boise State University, 1977 • M.A., University of Washington, 1980 • Ph.D., University of Iowa, 1986

Eva Herriott
Adjunct Instructor of Professional Writing • M.A., M.A., Ph.D., Maharishi International University, 1984, 1985, 2000

Patricia Innis
Adjunct Assistant Professor of Fine Arts • Artist-in-Residence • B.F.A., Bowling Green State University, 1971 • M.F.A., Maharishi University of Management, 1990

Vernon Katz
Adjunct Professor of Maharishi Vedic Science and Philosophy, Trustee of Maharishi University of Management • B.A., Ph.D., Oxford University (England), 1948, 1956

Jonathan Lipman
Director of the Institute of Maharishi Sthapatya Veda • B.A., Cornell University, 1977

Linda Mainquist
Adjunct Assistant Professor of Psychology • M.A., University of Iowa, 1978 • M.A., Naropa University, 1994

Helen Nelson
Adjunct Assistant Professor of Physics • A.B., University of California, Berkeley, 1966 • M.S., University of Alaska, 1970 • Ph.D., University of Texas, Austin, 1995
Ken Sewall
Adjunct Assistant Professor • B.S., Union College, 1972 • M.Ed., Springfield College, 1974 • M.S., Ph.D., University of Massachusetts, 1981, 1986

Brian Smith
Adjunct Instructor of Art • B.A., University of Denver, 1975

Julie Stephens
Adjunct Assistant Research Professor, Institute for Natural Medicine and Prevention • B.A., University of Wisconsin, 1972 • M.A., Ph.D., University of Missouri, 1974, 1982

DIRECTORIES

CLINICAL FACULTY

Veronica Butler
Clinical Assistant Professor of Maharishi Vedic Medicine • B.S., M.D., University of Michigan, 1972, 1976

Barry Charles
Clinical Professor of Maharishi Vedic Medicine • President of Maharishi Colleges of Vedic Medicine • M.D., New York City School of Medicine

Stuart Rothenberg
Clinical Associate Professor of Maharishi Vedic Medicine • B.A., Columbia College, 1968 • M.D., New York University School of Medicine, 1974

Hari Sharma
Clinical Professor of Maharishi Vedic Medicine • M.B.B.S., M.D., Lucknow University (India), 1961, 1965 • M.Sc., Ohio State University, 1969

VISITING FACULTY

John Cleary
Visiting Associate Professor of Computer Science • B.S. with honors, M.S., Ph.D., University of Canterbury, 1971, 1974, 1980

Laurel Farrin
Visiting Assistant Professor of Art • B.F.A., Ohio University, 1977 • M.F.A., University of Maryland, 1993

SPECIAL FACULTY

Christopher Bell
Assistant Professor of Maharishi Vedic Science • International Coordinator of Maharishi Open University • B.A., University of North Carolina, 1962 • J.D., LL.M., Washington University School of Law, 1965, 1969 • M.S.C.I., Maharishi European Research University, 1977

Kathryn Bell
Instructor of Maharishi Vedic Science, International Coordinator of Maharishi Open University • B.A., Valparaiso University, 1968 • M.S.C.I., Maharishi European Research University, 1977 • M.A., Maharishi International University, 1992

Michael Dillbeck
Professor of Psychology • International Vice President • International Director of Curriculum of Maharishi Vedic Universities • B.A. summa cum laude, Benedictine College, 1972 • M.S., Ph.D., Purdue University, 1973, 1976

Susan Levin Dillbeck
Professor of Education • International Vice President • International Director of Curriculum of Maharishi Vedic Universities • B.A., University of Illinois, 1964 • M.A., Ph.D., University of California at Berkeley, 1972, 1976

Christy Kleinschnitz
Assistant Professor of Maharishi Vedic Science • Coordinator of the National Coherence Office • B.A., St John’s College, 1972 • M.S.C.I., Maharishi European Research University, 1977 • M.A., M.A., Ph.D., Maharishi University of Management, 1982, 1989, 1996

Kurt Kleinschnitz
Assistant Professor of Physics • Coordinator of the National Coherence Office • B.S., Maharishi European Research University, 1977 • M.A., B.S., M.S., Maharishi International University, 1979, 1988, 1990 • Ph.D., Maharishi University of Management, 1996

John Konhaus
Fellow in Maharishi Vedic Science • B.S., Franklin and Marshall, 1970 • M.A., Maharishi European Research University, 1977 • M.A., Maharishi International University, 1986
Sara Konhaus
Fellow in Maharishi Vedic Science • B.A., Mills College, 1971 • M.S.C.I., Maharishi European Research University, 1976 • M.A., Maharishi International University, 1986

Dennis Rowe
International Coordinator and Faculty, Maharishi Open University • B.A., University of California, Los Angeles, 1972 • M.S.C.I., Maharishi European Research University, 1980 • M.B.A., University of Iowa, 1983

Robin Rowe
International Coordinator and Faculty, Maharishi Open University • B.A., California State University, San Francisco, 1970 • Standard California Teaching Credential, California State University, Hayward, 1971 • Ph.D., University of California, Santa Barbara, 1980

Margaret Sands
Fellow in Maharishi Vedic Science • B.A., State University of New York at Oneonta, 1976

William Sands
Assistant Professor of Maharishi Vedic Science and Sanskrit • B.S.B.A., Georgetown University, 1973 • M.S.C.I., Maharishi European Research University, 1981 • M.A., Ph.D., Maharishi International University, 1989, 1993